Math, asked by Anonymous, 1 month ago

Find sum of series

1 + 2(2) + 3( {2)}^{2}  + 4( {2)}^{3}  + ... + 100( {2}^{99} )

Answers

Answered by Anonymous
4

Solution :

Let's assume that,

{ \longmapsto \sf S = 1+2(2)+3(2)^2+4(2)^3+...+100(2)^{99}\Big[Equation-1\Big]}

Now multiplying this equation with 2 both sides.

{ \longmapsto \sf 2S = 2+2(2)^2+3(2)^3+...+100(2)^{100}\Big[Equation-2\Big]}

Now subtracting equation 2 from equation 1

{ \longmapsto \sf S - 2S = 1+\Big[(2)+(2)^2+(2)^3+...+(2)^{99}\Big]  - 100(2)^{100} }

{ \longmapsto \sf S(1 - 2) = 1+\Big[(2)+(2)^2+(2)^3+...+(2)^{99}\Big]  - 100(2)^{100} }

Now, we can see that the terms inside brackets are forming a geometric sequence with first term 2, common ratio 2 and number of terms = 99.

We have a formula to find sum of n terms of a geometric sequence with first term a, common ratio r.

  \boxed{\mathfrak{ sum = \dfrac{a( {r}^{n} - 1) }{(r - 1)}  }}

By applying this formula, we get :

{ \longmapsto \sf  - S= 1+2\left[ \dfrac{ {2}^{99} - 1 }{2 - 1} \right]  - 100(2)^{100} }

{ \longmapsto \sf  - S= 1+{ {2}^{100} - 2 }  - 100(2)^{100} }

{ \longmapsto \sf  - S=  - 1+ {2}^{100}   - 100(2)^{100} }

{ \longmapsto \sf  - S=  - 1+ {2}^{100}   ( 1 - 100)}

{ \longmapsto \sf  - S=  - 1+ {2}^{100}   (  - 99)}

{ \longmapsto \sf  - S=  - 1 -  {2}^{100}   (   99)}

Now multiplying both sides with -1, we get :

 \underline {\boxed{  \sf  S={2}^{100}   (   99) +1} }

Therefore this is the required sum.

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given series is

\rm :\longmapsto\:1 + 2.2 + 3. {2}^{2} + 4. {2}^{3} +  -  -  + 100. {2}^{99}

Let Suppose that,

\rm :\longmapsto\:S = 1 + 2.2 + 3. {2}^{2} + 4. {2}^{3} +  -  -  + 100. {2}^{99} -  - (1)

Now, the given series is product of corresponding terms of two series

 \red{\rm :\longmapsto\:1,2,3, -  -  -  - ,100}

and

 \red{\rm :\longmapsto\:1,2, {2}^{2} , -  -  -  - , {2}^{99} }

So, Second series is an GP series with common ratio 2

So,

 \red{\rm :\longmapsto\:S = 1 + 2.2 + 3. {2}^{2} + 4. {2}^{3} +  -  -  + 100. {2}^{99} -  - (1)}

On multiply both sides by 2, we get

\rm :\longmapsto\:2S = 1.2 + 2. {2}^{2}  + 3. {2}^{3} + 4. {2}^{3} +  -  -  + 100. {2}^{100} -  - (2)

can be rewritten as

 \red{\rm :\longmapsto\:2S = [2 + 2. {2}^{2}  + 3. {2}^{3} + 4. {2}^{3} +  -  - 99. {2}^{99}]+ 100. {2}^{100} -  - (2)}

On Subtracting equation (2) from equation (1), we get

\rm :\longmapsto\: - S = 1 + [2 +  {2}^{2}  +  {2}^{3} +  -  -  -  +  {2}^{99}] - 100. {2}^{100}

We know that,

Sum of n terms of GP series having first term a, common ratio r and number of terms n is

\boxed{ \tt{ \:  \: S_n \:  =  \:  \:  \frac{a \: ( {r}^{n}  \:  -  \: 1)}{r \:  -  \: 1} \:  \: }}

So,

\rm :\longmapsto\: - S = 1 + \dfrac{2( {2}^{99} - 1) }{2 - 1}  -  100. {2}^{100}

\rm :\longmapsto\: - S = 1 + \dfrac{2( {2}^{99} - 1) }{1} - 100. {2}^{100}

\rm :\longmapsto\: - S = 1 +  {2}^{100} - 2 -  100. {2}^{100}

\rm :\longmapsto\: - S = {2}^{100} - 1 -  100. {2}^{100}

\rm :\longmapsto\: - S = {2}^{100}(1  -  100) - 1

\rm :\longmapsto\: - S =  - 99.{2}^{100} - 1

\bf\implies \:\boxed{ \tt{ \: S \:  =  \: 1  +  9 \times  {2}^{100} \:  \: }}

Similar questions