Math, asked by yaaramohit72994, 5 months ago

find sum of zeroes for polynomial (2x2-5x-8)​

Answers

Answered by Divyanshi8123
9

Answer:

hello here is your answer hope it helps you

Step-by-step explanation:

Given:

x^2-5x+8x2−5x+8

\textbf{To find:}To find:

\text{Sum of the squares of the zeros}Sum of the squares of the zeros

\textbf{Solution:}Solution:

\text{Let the zeros of $x^2-5x+8$ be $\alpha$ and $\beta$}Let the zeros of x2−5x+8 be α and β

\text{Then,}Then,

\alpha+\beta=\dfrac{-b}{a}α+β=a−b

\alpha+\beta=\dfrac{5}{1}α+β=15

\implies\boxed{\alpha+\beta=5}⟹α+β=5

\alpha\,\beta=\dfrac{c}{a}αβ=ac

\alpha\,\beta=\dfrac{8}{1}αβ=18

\implies\boxed{\alpha\,\beta=8}⟹αβ=8

\text{Now,}Now,

{\alpha}^2+{\beta}^2α2+β2

=(\alpha+\beta)^2-2\,\alpha\beta=(α+β)2−2αβ

=(5)^2-2(8)=(5)2−2(8)

=25-16=25−16

=9=9

\implies\boxed{{\alpha}^2+{\beta}^2=9}⟹α2+β2=9

\therefore\textbf{Sum of the squares of zeros of $x^2-5x+8$ is 9}∴Sum of the squares of zeros of x2−5x+8 is 9

Find more:

The equation whose roots are smaller by 1 than those of 2x2 – 5x + 6 = 0 is 

a) 2x^2– 9x + 13 = 0

b) 2x^2– x + 3 = 0 

c) 2x^2+ 9x + 13 = 0

d) 2x^2 + x + 3 = 0

https://brainly.in/question/16821146

If alpha,beta are the roots of equation x^2-5x+6=0 and alpha > beta then the equation with the roots (alpha+beta)and (alpha-beta) is

https://brainly.in/question/5731128

If alpha and beta are zeroes of quadratic polynomial x2 -(k+6x)+2(2k-1) 

find k if alpha +beta=1/2alpha beta 

2)If alpha and beta are zeroes of x2-6x+a, find the value of a if 3alpha+2beta=20

Answered by Anonymous
6

\huge\tt\colorbox{aqua}{Answer}

2x² - 5x - 8 = 0

a = 2 , b = -5 , c = -8

Sum of the zeroes

 \alpha  +  \beta  =  \frac{ - b}{a}  \\  \alpha  +  \beta  =  \frac{ - ( - 5)}{2}  \\  \alpha  +  \beta  =  \frac{5}{2}

Similar questions