Math, asked by duragpalsingh, 4 months ago

Find summation of cot^-1 (n^2 + n + 1) from 0 to infinity.

Answers

Answered by StormEyes
12

Solution!!

\sf \displaystyle \sum\limits_{n=0}^{\infty }\;\cot ^{-1}(\sf n^{2}+n+1)

\sf T_{n}=\cot ^{-1}\;(n^{2}+n+1)

\sf =\tan ^{-1}\;\left(\dfrac{1}{n^{2}+n+1}\right)

\sf =\tan ^{-1}\;\left(\dfrac{(n+1)-n}{1+(n+1)n}\right)

We know that \sf \tan ^{-1}\;\left(\dfrac{x-y}{1+xy}\right)=\tan ^{-1}x-\tan ^{-1}y

\sf  T_{n}=\tan ^{-1}(n+1)-\tan ^{-1}n

\sf  T_{0}=\tan ^{-1}(1)-\tan ^{-1}(0)

\sf  T_{1}=\tan ^{-1}(2)-\tan ^{-1}(1)

\sf  T_{2}=\tan ^{-1}(3)-\tan ^{-1}(2)

\sf \vdots

\sf T_{n}=\tan ^{-1}(n+1)-\tan ^{-1}n

\sf T_{0}+T_{1}+T_{2}\dots T_{n}=\tan ^{-1}(n+1)-\tan ^{-1}(0)

\sf =\tan ^{-1}(n+1)

\sf T_{n}=\tan ^{-1}(n+1)

\sf n\xrightarrow{T_{n}}\ \infty =\tan ^{-1}(\infty +1)

\sf =\big {}^{ \pi }/{}_{ 2}

\boxed{\sf \displaystyle \sum\limits_{n=0}^{\infty }\;\cot ^{-1}(\sf n^{2}+n+1)={}^{\pi }/{}_{2}}

Answered by Anonymous
0

Answer:

correct answers please mark brainliest

Attachments:
Similar questions