Math, asked by MaNchEstEr0, 9 months ago

Find T.S.A of cylinder whose radius 7 cm and height is 10 cm.​

Answers

Answered by Tiger887
1

Answer:

TSA of cylinder =2πr(h+r)

So 2×22/7×7(10+7)

44× 17

748 cm ^ 2 ans.............

Please mark as brainliest

Answered by BrainlyConqueror0901
10

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{T.S.A\:of\:cylinder=748\:cm^{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:\implies  Radius\: of \: cylinder = 7 \: {cm}  \\  \\  \tt:  \implies Height \: of \: cylinder = 10 \: cm \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies T.S.A \: of \: cylinder = ?

• According to given question :

 \bold{As \: we \: know \:that} \\  \tt:  \implies T.S.A \: of \: cylinder = 2 \pi r(h + r) \\  \\ \tt:  \implies T.S.A \: of \: cylinder =2 \times \frac{22}{7}\times 7(10 + 7) \\  \\ \tt:  \implies T.S.A\: of \: cylinder =2 \times 22\times 17  \\  \\  \green{\tt:  \implies T.S.A \: of \: cylinder =748\:  {cm}^{2} }

  \purple{\bold{Some \: related \: formula}} \\    \pink{\tt\circ \: C.S.A\: of \: cylinder = 2\pi rh} \\  \\ \pink{\tt\circ \: Volume \: of \: cylinder =  \pi{r}^{2}h }

Similar questions