Math, asked by sherlock221bBS, 6 months ago

find tan theta if cos theta is πr²= -12/13​

Answers

Answered by BrainlyPopularman
15

Correct question :

• Find tan(θ) , If cos(θ) = -12/13.

ANSWER :

GIVEN :

  \\ \bf  \implies \cos( \theta)  =  - \dfrac{12}{13} \\

TO FIND :

 \\\implies \bf \tan( \theta)  = ?\\

SOLUTION :

  \\ \bf  \implies \cos( \theta)  =  - \dfrac{12}{13} \\

• We know that –

  \\ \bf  \implies  \sin^{2} ( \theta) +  \cos^{2} ( \theta)  = 1 \\

  \\ \bf  \implies  \sin^{2} ( \theta)   = 1 - \cos^{2} ( \theta) \\

  \\ \bf  \implies  \sin( \theta)   =  \sqrt{1 - \cos^{2} ( \theta)} \\

• Put the value of cos(θ)

  \\ \bf  \implies  \sin( \theta)   =  \sqrt{1 - \bigg( - \dfrac{12}{13} \bigg)^{2}} \\

  \\ \bf  \implies  \sin( \theta)   =  \sqrt{1 - \dfrac{144}{169}} \\

  \\ \bf  \implies  \sin( \theta)   =  \sqrt{\dfrac{169 - 144}{169}} \\

  \\ \bf  \implies  \sin( \theta)   =  \sqrt{\dfrac{25}{169}} \\

  \\ \bf  \implies  \sin( \theta)   =  \dfrac{5}{13}\\

• We also know that –

 \\\implies \bf \tan( \theta)  = \dfrac{ \sin( \theta) }{ \cos( \theta) } \\

• So that –

 \\\implies \bf \tan( \theta)  = \dfrac{ \dfrac{5}{13} }{ - \dfrac{12}{13}} \\

 \\\implies \bf \tan( \theta)  = \dfrac{ 5 }{ - 12} \\

 \\ \large\implies{ \boxed{ \bf \tan( \theta)  = -  \dfrac{5}{12}}} \\


MisterIncredible: Great :-)
BrainlyPopularman: Thank you :)
Answered by Anonymous
103

Answer:

Given :

  • Cos = -12 / 13

To Find :

  • what is the value of tan

Solution :

Diagram:

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(.3,2.5){\large\bf -12 }\put(2.8,.3){\large\bf 5 cm}\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\put(4,2.7){\large\bf 13 cm}\end{picture}

Pythagoras theory's :

 :  \implies  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {AB}^{2}  =  {BC}^{2}  +  {AC}^{2}  \\  \\

Substitute values :

 :  \implies  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   {(- 12)}^{2}  =  {BC}^{2}  +  {(13)}^{2}  \\  \\  \\  :  \implies  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:144 = {BC}^{2}  + 169 \\  \\  \\  :  \implies  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {BC}^{2}   = 169 - 144 \\  \\  \\ :  \implies  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {BC}^{2}   = \: 25 \\  \\  \\ :  \implies  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \: BC  = \: 5

 \\  \\:  \implies  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: Tan \:  =  \frac{prependicular}{ base}  \:

Substitute values :

 \\  \\:  \implies  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: Tan \:  =  \frac{5}{  - 12}  \:

⠀⠀⠀⠀⠀⠀⠀


MisterIncredible: Great :-)
Anonymous: Nice!
BrainlyPopularman: Keep it up
Similar questions