Math, asked by kirtirathod68, 1 year ago

find tca and csa and volume of cylinder whose radius is 20cm and hight is 14cm

Answers

Answered by PeshwaBajirao
0

T.S.A. = 2πr(h+r) = 2 × 22/7 × 20 × 34 = 4,274.28571 cm^2

C.S.A. = 2πrh = 2 × 22/7 × 20 × 14 = 1,760 cm^2

HOPE THIS WILL HELP U

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Volume\:of\:cylinder=17600\:cm}^{3}}}

\green{\therefore{\text{C.S.A\:of\:cylinder=1760\:cm}^{2}}}

\green{\therefore{\text{T.S.A\:of\:cylinder=4270.4\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = 20\: cm} \\ \\ : \implies \text{Height(h) = 14 \: cm} \\ \\ \red{ \underline \bold{To \: Find : }}\\:\implies \text{Volume\:of\:cylinder=?}\\ \\: \implies \text{C.S.A \: of \: cylinder = ? }\\ \\ : \implies \text{T.S.A\: of \: cylinder = ? }

• According to given question :

 \bold{As \: we \: know \: that} \\ : \implies \text{Volume\: of \: cylinder} =\pi{r}^{2}h \\ \\ : \implies \text{Volume\: of \: cylinder} = \frac{ 22}{7} \times {20}^{2}\times 14\\ \\ : \implies \text{Volume\: of \: cylinder} =22\times 400\times 2\\ \\ \green{ : \implies \text{Volume\: of \: cylinder} =17600\: {cm}^{3}}\\\\\bold{As \: we \: know \: that} \\ : \implies \text{C.S.A\: of \: cylinder} =2\pi rh \\ \\ : \implies \text{C.S.A\: of \: cylinder} =2 \times \frac{ 22}{7} \times 20\times 14 \\ \\ : \implies \text{C.S.A\: of \: cylinder} =2 \times 22 \times 40 \\ \\ \green{ : \implies \text{C.S.A\: of \: cylinder} =1760\: {cm}^{2}} \\ \\ \bold{As \: we \: know \: that} \\ : \implies \text{T.S.A\: of \: cylinder} =2\pi r(h + r) \\ \\ : \implies \text{T.S.A\: of \: cylinder} =2 \times \frac{22}{7} \times 20(14+ 20) \\ \\ : \implies \text{T.S.A\: of \: cylinder} =2 \times 3.14 \times 680 \\ \\ \green{ : \implies \text{T.S.A\: of \: cylinder} =4270.4\: {cm}^{2} }

Similar questions