Math, asked by sindhushaji22, 8 months ago

Find ten rational numbers between-
1) -2/5 and 1/2
2) 2/3 and 4/5
3) -3/2 and 5/3​

Answers

Answered by Anonymous
1

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • Find ten rational numbers between

  1. -2/5 and 1/2
  2. 2/3 and 4/5
  3. -3/2 and 5/3

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \tt \longmapsto \frac { -2} { 5} \& \frac { 1} { 2}

Firstly we need to have a same denominator.

Taking LCM = 10

 \:\:

 \sf \implies  \frac { -4 } { 10 } \& \frac { 5 } { 10 }

 \:\:

Let us multiply the fraction by  \rm \frac { 11 } { 11 }

 \:\:

 \sf \implies  \frac { -4×11 } { 10×11 } \& \frac { 5×11 } { 10×11}

 \:\:

 \sf \implies  \frac { -44 } { 110 } \& \frac { 55 } { 110}

 \:\:

 \underline{\bold{\texttt{Hence 10 rational numbers are }}}

 \:\:

 \rm \frac { -43 } { 55 } , \frac { -42 } { 55 } , \frac { -41 } { 55 } , \frac { -40 } { 55 } , \frac { -39 } { 55 } </p><p>, \frac { -38 } { 55 } ,\frac { -37 } { 55 } , \frac { -36 } { 55 } , \frac { -35 } { 55 } , \frac { -34 } { 55 }

 \:\:

\rule{200}2

 \tt \longmapsto \frac { 2} { 3 } \&amp; \frac { 4} { 5}

Firstly we need to have a same denominator.

Taking LCM = 15

 \:\:

 \sf \implies  \frac { 10} { 15 } \&amp; \frac { 12} { 10 }

 \:\:

Let us multiply the fraction by  \rm \frac { 11 } { 11 }

 \:\:

 \sf \implies  \frac { 10×11 } { 15×11 } \&amp; \frac { 12×11 } { 15×11}

 \:\:

 \sf \implies  \frac { 110 } { 165} \&amp; \frac { 132} { 165}

 \:\:

 \underline{\bold{\texttt{Hence 10 rational numbers are }}}

 \:\:

 \rm \frac { 111 } { 165 } , \frac { 112} { 165 } , \frac { 113 } { 165 } , \frac { 114} { 165 } , \frac { 115 } { 165 } , \frac { 116} { 165 } , \frac { 117 } { 165 } , \frac { 118 } { 165 } , \frac { 119 } { 165 } , \frac { 120 } { 165 }

\rule{200}2

 \tt \longmapsto  \frac { -3} { 2 } \&amp; \frac { 5} { 3}

Firstly we need to have a same denominator.

Taking LCM = 6

 \:\:

 \sf \implies  \frac { -9 } { 6 } \&amp; \frac { 10 } { 6 }

 \:\:

Let us multiply the fraction by  \rm \frac { 11 } { 11 }

 \:\:

 \sf \implies  \frac { -9×11 } { 6×11 } \&amp; \frac { 10×11 } { 6×11}

 \:\:

 \sf \implies  \frac { -99} { 66} \&amp; \frac { 110 } { 66}

 \:\:

 \underline{\bold{\texttt{Hence 10 rational numbers are }}}

 \:\:

 \rm \frac { -98 } { 66 } , \frac { -97 } { 66 } ,\frac { -96 } { 66 } ,\frac { -95 } { 66 } , \frac { -94} { 66 } , \frac { -93 } { 66 } , \frac { -92 } { 66 } , \frac { -91 } { 66 } , \frac { -90} { 66 } , \frac { -89 } { 66 }

\rule{200}5

Similar questions