Math, asked by yfsxufihcihcjhcihc, 6 months ago

find[tex]1) \: \: \displaystyle \lim_{x \to 0} \: \frac{1 - cos (1 - cos \: x )}{ {x}^{4} } \\ \\ 2) \: \: \displaystyle \lim_{x \to 0} \: \frac{ {e}^{ {x}^{2} } - cos \: x }{ {x}^{2}...​

Answers

Answered by Anonymous
0

First question :

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\displaystyle \lim_{x \to 0} \: \frac{1 - cos (1 - cos \: x )}{ {x}^{4} }=\frac{1}{8}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\   \tt: \implies \displaystyle \lim_{x \to 0} \: \frac{1 - cos (1 - cos \: x )}{ {x}^{4} } \\  \\ \red{\underline \bold{To \: Find :}} \\   \tt: \implies \displaystyle \lim_{x \to 0} \: \frac{1 - cos (1 - cos \: x )}{ {x}^{4} }  = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt : \implies \displaystyle \lim_{x \to 0} \: \frac{1 - cos (1 - cos \: x )}{ {x}^{4} } \\  \\  \tt \circ \: multiply \:and \: divide \: with \: (1 - cos \:x)^{2}   \\  \\  \tt: \implies  \displaystyle \lim_{x \to 0} \: \frac{1 - cos(1 - cos \: x)}{ {x}^{4} } \times  \frac{(1 - cos  \: x)^{2} }{(1 - cos  \: x)^{2}}  \\  \\ \tt : \implies \displaystyle \lim_{x \to 0} \: \frac{1 - cos(1 - cos \: x)}{(1 - cos  \: x)^{2}}  \times  \frac{(1 - cos  \: x)^{2}}{ {x}^{4} }  \\  \\  \tt \circ \:  \displaystyle \lim_{x \to 0} \:  \frac{1 - cos \: x}{ {x}^{2} }  =  \frac{1}{2}  \\  \\ \tt:  \implies \displaystyle \lim_{x \to 0} \: \frac{1}{2}  \times  \bigg( \frac{1 - cos \: x}{ {x}^{2} }  \bigg)^{2}  \\  \\ \tt:  \implies \frac{1}{2}  \times   \bigg(\frac{1}{2}  \bigg)^{2}  \\  \\  \green{\tt:  \implies \frac{1}{8}}  \\  \\   \green{\tt\therefore\displaystyle \lim_{x \to 0} \: \frac{1 - cos (1 - cos \: x )}{ {x}^{4} }  =  \frac{1}{8} }

Second question :

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\displaystyle \lim_{x \to 0} \: \frac{e^{x^{2}}- cos \: x}{ {x}^{2} }=\frac{3}{2}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

  \green{\underline \bold{Given :}} \\   \tt: \implies \displaystyle \lim_{x \to 0} \: \frac{ {e}^{ {x}^{2} }  - cos \: x }{ {x}^{2} } \\  \\ \red{\underline \bold{To \: Find :}} \\   \tt: \implies \displaystyle \lim_{x \to 0} \: \frac{ {e}^{ {x}^{2} } - cos \: x }{ {x}^{2} }  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt: \implies \displaystyle \lim_{x \to 0} \: \frac{ {e}^{ {x}^{2} } - cos \: x }{ {x}^{2} }  \\  \\ \tt: \implies \displaystyle \lim_{x \to 0}  \: \frac{ {e}^{ {x}^{2} }   - 1  + 1- cos \: x }{ {x}^{2} }  \\  \\  \tt:  \implies \displaystyle \lim_{x \to 0}  \:  \bigg(\frac{ {e}^{ {x}^{2} }  - 1}{ {x}^{2} }  +  \frac{1 - cos \: x}{ {x}^{2} }  \bigg) \\  \\  \tt \circ \: \displaystyle \lim_{x \to 0}  \: \frac{ {e}^{x} - 1 }{ {x}^{2} }  = 1 \\  \\  \tt \circ \:   \displaystyle \lim_{x \to 0}  \:  \frac{1 - cos \: x}{ {x}^{2} }  =  \frac{1}{2}  \\  \\  \tt:  \implies  1 + \frac{1}{2}  \\  \\  \green{\tt:  \implies  \frac{3}{2}}  \\  \\   \green{\tt \therefore \displaystyle \lim_{x \to 0} \: \frac{ {e}^{ {x}^{2} } - cos \: x }{ {x}^{2} }  = \frac{3}{2} }

Answered by MissCandyFloss
0

First question :

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\displaystyle \lim_{x \to 0} \: \frac{1 - cos (1 - cos \: x )}{ {x}^{4} }=\frac{1}{8}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\   \tt: \implies \displaystyle \lim_{x \to 0} \: \frac{1 - cos (1 - cos \: x )}{ {x}^{4} } \\  \\ \red{\underline \bold{To \: Find :}} \\   \tt: \implies \displaystyle \lim_{x \to 0} \: \frac{1 - cos (1 - cos \: x )}{ {x}^{4} }  = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt : \implies \displaystyle \lim_{x \to 0} \: \frac{1 - cos (1 - cos \: x )}{ {x}^{4} } \\  \\  \tt \circ \: multiply \:and \: divide \: with \: (1 - cos \:x)^{2}   \\  \\  \tt: \implies  \displaystyle \lim_{x \to 0} \: \frac{1 - cos(1 - cos \: x)}{ {x}^{4} } \times  \frac{(1 - cos  \: x)^{2} }{(1 - cos  \: x)^{2}}  \\  \\ \tt : \implies \displaystyle \lim_{x \to 0} \: \frac{1 - cos(1 - cos \: x)}{(1 - cos  \: x)^{2}}  \times  \frac{(1 - cos  \: x)^{2}}{ {x}^{4} }  \\  \\  \tt \circ \:  \displaystyle \lim_{x \to 0} \:  \frac{1 - cos \: x}{ {x}^{2} }  =  \frac{1}{2}  \\  \\ \tt:  \implies \displaystyle \lim_{x \to 0} \: \frac{1}{2}  \times  \bigg( \frac{1 - cos \: x}{ {x}^{2} }  \bigg)^{2}  \\  \\ \tt:  \implies \frac{1}{2}  \times   \bigg(\frac{1}{2}  \bigg)^{2}  \\  \\  \green{\tt:  \implies \frac{1}{8}}  \\  \\   \green{\tt\therefore\displaystyle \lim_{x \to 0} \: \frac{1 - cos (1 - cos \: x )}{ {x}^{4} }  =  \frac{1}{8} }

Second question :

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\displaystyle \lim_{x \to 0} \: \frac{e^{x^{2}}- cos \: x}{ {x}^{2} }=\frac{3}{2}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

  \green{\underline \bold{Given :}} \\   \tt: \implies \displaystyle \lim_{x \to 0} \: \frac{ {e}^{ {x}^{2} }  - cos \: x }{ {x}^{2} } \\  \\ \red{\underline \bold{To \: Find :}} \\   \tt: \implies \displaystyle \lim_{x \to 0} \: \frac{ {e}^{ {x}^{2} } - cos \: x }{ {x}^{2} }  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt: \implies \displaystyle \lim_{x \to 0} \: \frac{ {e}^{ {x}^{2} } - cos \: x }{ {x}^{2} }  \\  \\ \tt: \implies \displaystyle \lim_{x \to 0}  \: \frac{ {e}^{ {x}^{2} }   - 1  + 1- cos \: x }{ {x}^{2} }  \\  \\  \tt:  \implies \displaystyle \lim_{x \to 0}  \:  \bigg(\frac{ {e}^{ {x}^{2} }  - 1}{ {x}^{2} }  +  \frac{1 - cos \: x}{ {x}^{2} }  \bigg) \\  \\  \tt \circ \: \displaystyle \lim_{x \to 0}  \: \frac{ {e}^{x} - 1 }{ {x}^{2} }  = 1 \\  \\  \tt \circ \:   \displaystyle \lim_{x \to 0}  \:  \frac{1 - cos \: x}{ {x}^{2} }  =  \frac{1}{2}  \\  \\  \tt:  \implies  1 + \frac{1}{2}  \\  \\  \green{\tt:  \implies  \frac{3}{2}}  \\  \\   \green{\tt \therefore \displaystyle \lim_{x \to 0} \: \frac{ {e}^{ {x}^{2} } - cos \: x }{ {x}^{2} }  = \frac{3}{2} }

Similar questions