Math, asked by bbbbest, 1 month ago

Find (\alpha-1)(\beta-1)(\gamma-1)(\delta-1) if the four solutions
of x^{4}+4x^{3}+2x^{2}-4x+1=0 are x=\alpha,\beta,\gamma,\delta.

Answers

Answered by user0888
140

\large\underline{\text{Required answer}}

(\alpha-1)(\beta-1)(\gamma-1)(\delta-1)=4

\large\underline{\text{Step 1. Factor theorem}}

By factor theorem, we know that,

\red{\bigstar}(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)=x^{4}+4x^{3}+2x^{2}-4x+1

\large\underline{\text{Step 2. Substitution}}

Then when x=1,

\implies(1-\alpha)(1-\beta)(1-\gamma)(1-\delta)=1^{4}+4\cdot(1)^{3}+2\cdot(1)^{2}-4\cdot(1)+1

Distributing (-1) into each factor, we get,

\implies(\alpha-1)(\beta-1)(\gamma-1)(\delta-1)=1^{4}+4\cdot(1)^{3}+2\cdot(1)^{2}-4\cdot(1)+1

\implies(\alpha-1)(\beta-1)(\gamma-1)(\delta-1)=1+4+2-4+1

\implies(\alpha-1)(\beta-1)(\gamma-1)(\delta-1)=4

\large\underline{\text{Conclusion}}

The required value is 4.

\purple{\bigstar}\large\underline{\text{Bonus question}}\purple{\bigstar}

Find the value of \dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{\gamma}+\dfrac{1}{\delta} if x=\alpha,\beta,\gamma,\delta are the four solutions to the equation x^{4}-2x^{3}+5x^{2}+2x+9=0.

\purple{\bigstar}\large\underline{\text{Solution}}\purple{\bigstar}

Let the given polynomial be f(x), then since none of the solutions are zero, f\left(\dfrac{1}{x}\right), which is a rational expression, has four reciprocal zeros.

Thus, x^{4}\cdot f\left(\dfrac{1}{x^{4}}\right) is the minimal polynomial with the reciprocal zeros.

\implies x^{4}\cdot f\left(\dfrac{1}{x^{4}}\right)=9x^{4}+2x^{3}+5x^{2}-2x+1

Hence, by Vieta's formulas, the sum of the reciprocals is -\dfrac{2}{9}.

Answered by esuryasinghmohan
81

Step-by-step explanation:

given :

Find (\alpha-1)(\beta-1)(\gamma-1)(\delta-1) if the four solutions

of x^{4}+4x^{3}+2x^{2}-4x+1=0 are x=\alpha,\beta,\gamma,\delta.

to find :

alpha,\beta,\gamma,\delta[/tex].

solution :

  • *(x-a) (x - 3)(x - y)(x − 8) = x¹ + 4x³ + 2x² - 4x + 1

  • x= 1

  • (1-a)(1 - 3)(1-7)(1 - 8) = 14 + 4 ∙ (1)³ + 2 ⋅ (1)² − 4. (1) + 1

  • (a -1)

  • (3 − 1) (y − 1)(8 − 1) = 14 + 4 ∙ (1)³ + 2 · (1)² − 4. (1) + 1

  • (a-1)(3-1) (y − 1)(8 − 1) = 1 + - 4+2 4+1

  • (a − 1)(31) (y − 1)(8 − 1) = 4

  • polynomial be f(x),

  • f(1/x)

  • x= f (1/x) = 9x² + 2x³ + 5x².

  • 2x + 1

  • sum of reciprocal is -2/9
Similar questions