Math, asked by varunjaiswaal454, 9 months ago

find
  \displaystyle \lim_{x \to 1}  \:  \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2  }

Answers

Answered by BrainlyConqueror0901
15

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 }=\frac{3}{4}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\ \tt:  \implies   \displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 } \\   \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies \displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 } = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies \displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 }  \\   \\  \tt \circ \:  {a}^{3} -  {b}^{3} = (a - b)( {a}^{2}  +  {b}^{2} + ab)    \\ \\ \tt:  \implies \displaystyle \lim_{x \to 1} \: \: \frac{  (x - 1)( {x}^{2}   +  {1}^{2} + x) }{ (x - 1)({x}^{2}   + x + 2)}  \\  \\ \tt:  \implies \displaystyle \lim_{x \to 1} \: \: \frac{ ({x}^{2} + x + 1) }{ ({x}^{2} + x + 2) }  \\  \\ \tt:  \implies  \frac{\displaystyle \lim_{x \to 1}  \:  \: ( {x}^{2} + x +  1)  }{\displaystyle \lim_{x \to 1}  \:  \: ( {x}^{2} + x + 2) } \\  \\  \tt:  \implies  \frac{ {1}^{2}  + 1 + 1}{ {1}^{2}  + 1 + 2}  \\  \\ \green{  \tt:  \implies \displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 } =  \frac{3}{4} }

Answered by Anonymous
38

Answer:

</p><p>\begin{gathered}\pink{\tt{\therefore{\displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 }=\frac{3}{4}}}}\\\end{gathered}

\blue{\huge{\underline{\underline{Step-by-step\: \: explanation:}}}}

\begin{gathered}\pink{\underline \bold{Given :}} \\ \tt: \implies \displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 } \\ \\ \orange{\underline \bold{To \: Find :}} \\ \tt: \implies \displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 } = ?\end{gathered} </p><p>

According to given question :

\begin{gathered}\bold{As \: we \: know \: that} \\ \tt: \implies \displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 } \\ \\ \tt \circ \: {a}^{3} - {b}^{3} = (a - b)( {a}^{2} + {b}^{2} + ab) \\ \\ \tt: \implies \displaystyle \lim_{x \to 1} \: \: \frac{ (x - 1)( {x}^{2} + {1}^{2} + x) }{ (x - 1)({x}^{2} + x + 2)} \\ \\ \tt: \implies \displaystyle \lim_{x \to 1} \: \: \frac{ ({x}^{2} + x + 1) }{ ({x}^{2} + x + 2) } \\ \\ \tt: \implies \frac{\displaystyle \lim_{x \to 1} \: \: ( {x}^{2} + x + 1) }{\displaystyle \lim_{x \to 1} \: \: ( {x}^{2} + x + 2) } \\ \\ \tt: \implies \frac{ {1}^{2} + 1 + 1}{ {1}^{2} + 1 + 2} \\ \\ \blue{ \tt: \implies \displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 } = \frac{3}{4} }\end{gathered}

Hðþê  hêlþ µ

Similar questions