Math, asked by HopelesslyRomantic, 5 months ago

find \displaystyle\sf \int \dfrac{sin^{-1}\sqrt{x}-cos^{-1}\sqrt{x}}{sin^{-1}\sqrt{x}+cos^{-1}\sqrt{x}} dx \;\; ; \;\; x \in [0,1]

it is 6 marks Question please don't spam​

Answers

Answered by Anonymous
386

\sf{\underbrace{\underline{ understanding\:the\: Question}}}

firstly use the identity \sf sin^{-1} \theta +cos^{ -1} \theta = \dfrac{\pi}{2} to convert integrand in terms of \sf sin^{-1} only. then, integrate by using substitution method.

Let's do it!

Answer:-

let \sf I = \displaystyle\sf \int \dfrac{sin^{-1}\sqrt{x}-cos^{-1}\sqrt{x}}{sin^{-1}\sqrt{x}+cos^{-1}\sqrt{x}} dx

we know that \sf sin^{-1}\sqrt{x}+cos^{-1}\sqrt{x}=\dfrac{\pi}{2}

\sf \implies cos^{-1}\sqrt{x} = \dfrac{\pi}{2} - sin^{-1}\sqrt{x}

\displaystyle\sf \therefore I = \int \dfrac{sin^{-1}\sqrt{x}- \left(\dfrac{\pi}{2} - sin^{-1}\sqrt{x} \right)}{\dfrac{\pi}{2}} dx

\displaystyle\sf \therefore \int \dfrac{2\:sin^{-1}\sqrt{x}-\dfrac{\pi}{2}}{\dfrac{\pi}{2}} dx = \dfrac{2}{\pi} \int \left( 2\:sin^{-1}\sqrt{x}-\dfrac{\pi}{2}\right) dx

\displaystyle\sf = \dfrac{4}{\pi} \int sin^{-1}\sqrt{x} dx - \int 1 \: dx

\displaystyle\sf = \dfrac{4}{\pi} \int sin^{-1}\sqrt{x} dx - x

\sf \implies I = \dfrac{4}{\pi} I_1 - x + C\:\:\:\:\;\:\dots(1)

where \displaystyle\sf I_1 = \int sin^{-1}\sqrt{x}dx

Put \sf \sqrt{x} = tz

  • \sf x = t^2
  • \sf dx = 2t\:dt

\displaystyle\sf I_1 = \int sin^{-1}t+2t\:dt

\displaystyle\sf = 2 \int sin^{-1} t \cdot t \: dt

\displaystyle\sf = 2 \left[ sin^{-1}\cdot \dfrac{t^2}{2} - \int \dfrac{1}{\sqrt{1-t^2}} \cdot \dfrac{t^2}{2} dt\right]

\displaystyle\sf = \int\dfrac{t^2}{\sqrt{1-t^2}} dt

\displaystyle\sf = t^2\:sin^{-1}\:t - \int \dfrac{(1-t^2)+1}{\sqrt{1-t^2}} dt

\displaystyle\sf = t^2\:sin^{-1}t+t\sqrt{1-t^2} + \dfrac{1}{2} sin^{-1}\:t - sin^{-1}\:t \left( t^2 - \dfrac{1}{t} \right) \: sin^{-1}\:t + \dfrac{1}{2} \: r \sqrt{1-t^2}

\sf = \dfrac{1}{2} \left[ (2x-1)\:sin^{-1}\:\sqrt{x} + \sqrt{x}\sqrt{1-x}\right]

\sf = \dfrac{1}{2} \left[ (2x-1)\:sin^{-1}\:\sqrt{x} + \sqrt{x-x^2}\right]

on putting values of \sf I_1 in eq. (i) , we get value of \displaystyle\sf \int \dfrac{sin^{-1}\sqrt{x}-cos^{-1}\sqrt{x}}{sin^{-1}\sqrt{x}+cos^{-1}\sqrt{x}} dx as

\boxed{\sf = \dfrac{2}{\pi} \left[ (2x-1)sin^{-1}\:\sqrt{x} + \sqrt{x-x^2}\right] - x + C}


Anonymous: Nice work !!
Anonymous: Thanka :)
Seafairy: Outstanding :)♡
Anonymous: Thank u :)
Seafairy: your welcome :)
Anonymous: :)
Anonymous: Thanks alot dear ❤❤❤
Similar questions