Math, asked by Anonymous, 8 months ago

find
 \frac{1}{1 +  {x}^{a - b} }   +  \frac{1 +}{1 +  {x}^{b - a} }

Answers

Answered by VishnuPriya2801
22

Answer:-

To find:

 \sf  \dfrac{1}{1 +  {x}^{a - b} }  +  \dfrac{1}{1 +  {x}^{b - a} }

Using  \sf \dfrac{a^m}{a^n} = a^{m - n} we get,

 \sf  \implies \dfrac{1}{1 +  \dfrac{ {x}^{a} }{ {x}^{b} } }  +  \dfrac{1}{1 +  \dfrac{ {x}^{b} }{ {x}^{a} } }

Taking LCM in denominators we get,

 \sf \implies \:  \dfrac{1}{ \dfrac{ {x}^{b} +  {x}^{a}  }{ {x}^{b} } }  +  \dfrac{1}{  \dfrac{ {x}^{a}  +  {x}^{b} }{ {x}^{a} } }   \\  \\  \sf \implies \dfrac{ {x}^{b} }{ {x}^{a} +  {x}^{b}  }    +  \dfrac{ {x}^{a} }{ {x}^{a} +  {x}^{b}  }\\  \\  \sf \implies \:  \dfrac{ {x}^{a}  +  {x}^{b} }{ {x}^{a}  +  {x}^{b} }  \\  \\  \implies \:  \sf \large{ \red{1}}

Some Important Formulae:

  •  \sf a^m \times a^n = a^{m + n}

  •  \sf a^m / a^n = a^{m - n}

  •  \sf {({a}^{m})}^{n} = a^{mn}

  •  \sf { \bigg(\dfrac{a}{b}\bigg) }^{-m} = { \bigg(\dfrac{b}{a}\bigg) }^{m}

  • a⁰ = 1

  • a¹ = a
Similar questions