Math, asked by amritkaurraghuvir22, 6 months ago

Find
 \frac{ {1}^{2} }{1}  +  \frac{ {1}^{2} +  {2}^{2}  }{2}  +  \frac{ {1}^{2}  +  {2}^{2}   + {3}^{2} }{3}  + ...
upto 'n' Terms.​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

s _{n}  =  \frac{ {1}^{2} }{1}   +  \frac{ {1}^{2}  +  {2}^{2} }{2}  +  \frac{ {1}^{2} +  {2}^{2} +  {3}^{2}   }{3}  + ... +  \frac{ {1}^{2}  +  {2}^{2} +  {3}^{2}  + .... +  {n}^{2}  }{n}

 =  > s_{n} =   \sum _{r = 0}^{n}t _{r}   \\

 =  >s _{n}  =  \sum _{r = 0}^{n} \frac{r(r + 1)(2r + 1)}{6r}   \\

 =  >  s_{n} =  \sum _{r = 0}^{n} \frac{ (2 {r}^{2}  + 3r + 1)}{6}  \\

 =  >  s_{n}  =  \sum _{r = 0}^{n}(  \frac{ {r}^{2} }{3}   +  \frac{r}{3}  +  \frac{1}{6})  \\

 =  >  s_{n}  =  \frac{1}{3}  \sum _{r = 0}^{n}  {r}^{2}  +   \frac{1}{2} \sum _{r = 0}^{n}r +  \frac{n}{6}  \\

 =  >  s_{n} = \frac{ n(n + 1)(2n + 1)}{18} +  \frac{n(n + 1)}{4}   +  \frac{n}{6}

Similar questions