Find upto n terms.
Answers
Answered by
0
Solution :
upto n terms.
nth term in the series ( tn )
= [ 1²+2²+3²+ ...+n² ]/( n + 1 )
= [ n( n+1 )( 2n + 1 ) ]/[ 6( n + 1 ) ]
= [ n( 2n + 1 ) ]/6 ----- ( 1 )
******************************************
We know that ,
i ) Sum of first n natural Numbers
= n(n+1)/2
ii ) Sum of the squares of first n
natural numbers =[ n(n+1)(2n+1)/6 ]
****************************************
Sum of the terms = Sn
= Sigma [ n(2n+1)/6 ]
= 1/6 { Sigma ( 2n² + n ) }
= 1/6 { 2sigma n² + sigma n }
= 1/6 { 2[ n(n+1)(2n+1)/6 ] + [ n(n+1)/2 ] }
= 1/6 { [n(n+1)(2n+1)/3] + [n(n+1)/2 ] }
= 1/6 { n(n+1)[ (2n+1)/3 + 1/2 ] }
= [n(n+1)/6] { [ 2(2n+1) + 3 ]/6 }
= [ n(n+1)/6] { (4n + 2 + 3 )/6]
Sn = [ n(n+1)( 4n+5 )]/36
••••
upto n terms.
nth term in the series ( tn )
= [ 1²+2²+3²+ ...+n² ]/( n + 1 )
= [ n( n+1 )( 2n + 1 ) ]/[ 6( n + 1 ) ]
= [ n( 2n + 1 ) ]/6 ----- ( 1 )
******************************************
We know that ,
i ) Sum of first n natural Numbers
= n(n+1)/2
ii ) Sum of the squares of first n
natural numbers =[ n(n+1)(2n+1)/6 ]
****************************************
Sum of the terms = Sn
= Sigma [ n(2n+1)/6 ]
= 1/6 { Sigma ( 2n² + n ) }
= 1/6 { 2sigma n² + sigma n }
= 1/6 { 2[ n(n+1)(2n+1)/6 ] + [ n(n+1)/2 ] }
= 1/6 { [n(n+1)(2n+1)/3] + [n(n+1)/2 ] }
= 1/6 { n(n+1)[ (2n+1)/3 + 1/2 ] }
= [n(n+1)/6] { [ 2(2n+1) + 3 ]/6 }
= [ n(n+1)/6] { (4n + 2 + 3 )/6]
Sn = [ n(n+1)( 4n+5 )]/36
••••
Similar questions
English,
7 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago
India Languages,
1 year ago