Math, asked by Anonymous, 1 year ago

Find  \frac{x}{y} ; when x² + 6y² = 5xy

Answers

Answered by Aryendra
19
x^2-5xy+6y^2=0.....x^2-3xy-2xy+6y^2=0....x(x-3y)-2y(x-3y)=0.....(x-2y)(x-3y)=0..... Therefore, x=3y. x/y=3. Or. x=2y...x/y=2..( both values are correct as this is a quadratic equation)

Anonymous: it needs to be in ratio
Aryendra: Then 2:1 or 3:1
Anonymous: no dude, its 3:2
Aryendra: How? 3:2 ! Even TPS has arrived on the same result
Answered by TPS
36
x^2+6y^2=5xy\\x^2-5xy+6y^2=0\\ \\divide\ all\ by\ y^2\\ \\ \frac{x^2}{y^2} - \frac{5xy}{y^2} + \frac{6y^2}{y^2} =0\\ \\ (\frac{x}{y})^2 -5( \frac{x}{y} )+ 6 =0\\ \\it\ is\ a\ quadratic\ equation\ in\  \frac{x}{y}.\ Solving\ it\ we\ get;\\ (\frac{x}{y})^2 -3( \frac{x}{y} )-2( \frac{x}{y} )+ 6 =0\\ \\( \frac{x}{y} -2)( \frac{x}{y} -3)=0\\ \\ \frac{x}{y} =\boxed{2}\ or\ \frac{x}{y} =\boxed{3}
Similar questions