Find:
Answers
Solution:
Before we solve this problem, we must get to know some trigonometric identities as follows
tan2x = 2 tanx / (1 - tan²x)
• tanx - cotx
= 1/cotx - cotx
= (1 - cot²x) / cotx
= - 2 (cot²x - 1) / (2 cotx)
= - 2 cot2x
• cot2x - tan2x
= cot2x - 1/cot2x
= 2 (cot²2x - 1) / (2 cot2x)
= 2 cot4x
• cot4x - tan4x
= cot4x - 1/cot4x
= 2 (cot²4x - 1) / (2 cot4x)
= 2 cot8x
• tanx + 2 tan2x + 4 tan4x - cotx + 8 cot8x
= (tanx - cotx) + 2 tan2x + 4 tan4x + 8 cot8x
= - 2 cot2x + 2 tan2x + 4 tan4x + 8 cot8x
= - 2 (cot2x - tan2x) + 4 tan4x + 8 cot8x
= - 2 (2 cot4x) + 4 tan4x + 8 cot8x
= - 4 cot4x + 4 tan4x + 8 cot8x
= - 4 (cot4x - tan4x) + 8 cot8x
= - 4 (2 cot8x) + 8 cot8x
= - 8 cot8x + 8 cot8x
= 0
or, tanx + 2 tan2x + 4 tan4x - cotx + 8 cot8x = 0
or, tanx + 2 tan2x + 4 tan4x = cotx - 8 cot8x
•••
∴ I = ∫ x (tanx + 2 tan2x + 4 tan4x) dx / (cotx - 8 cot8x)
= ∫ x (cotx - 8 cot8x) dx / (cotx - 8 cot8x)
= ∫ x dx
= x²/2 + c
where c = constant of integration
Therefore, the required integral is
x²/2 + c
Answer:
refer to the attachment see the attachment