Math, asked by Swarup1998, 1 year ago

Find : \int \frac{e^{x}(1-x^{2})}{(1+x^{2})^{2}}dx

Answers

Answered by LovelyG
13

Answer :

 \int\frac{(1 - x^{2})e^{x}}{(1 + x^{2})^{2}}\: dx \\  \\  \int\frac{(1 - x^{2} - 2x)e^{x}}{(1 + x^{2})^{2}}\: dx \\  \\ \int \frac{e^{x}}{(1 + x ^{2})} dx +  \int \frac{ - 2x \: e^{x}}{(1 + x ^{2})^{2} } dx

Now, tackling the integer on the left first,

\int \frac{e^{x}}{(1 + x ^{2})} dx  \\

Integration of parts :

u = (1 + x {}^{2} )^{ - 1} ; \\ du =  - 2x(1 + x^{2})^{ - 2} dx \\  \\ dv = e^{x} dx \: ; \: v = e^{x}

And this remaining integral cancels -

 \boxed{ \bf  \frac{e^{x} }{(1 + x {}^{2})}  +  C }\\

Answered by XxItsDivYanShuxX
8

\LARGE{\red{\boxed{\purple{\underline{\orange{\mathtt{Question:↓}}}}}}}

Find:

\int \frac{e^{x}(1-x^{2})}{(1+x^{2})^{2}}dx

\LARGE{\red{\boxed{\purple{\underline{\orange{\mathtt{Answer:↓}}}}}}}

\begin{gathered} \boxed{ \bf \frac{e^{x} }{(1 + x {}^{2})} + C }\\\end{gathered}

\begin{gathered} \int\frac{(1 - x^{2})e^{x}}{(1 + x^{2})^{2}}\: dx \\ \\ \int\frac{(1 - x^{2} - 2x)e^{x}}{(1 + x^{2})^{2}}\: dx \\ \\ \int \frac{e^{x}}{(1 + x ^{2})} dx + \int \frac{ - 2x \: e^{x}}{(1 + x ^{2})^{2} } dx \end{gathered}

Now, tackling the integer on the left first,

\begin{gathered}\int \frac{e^{x}}{(1 + x ^{2})} dx \\ \end{gathered}

Integration of parts :

\begin{gathered}u = (1 + x {}^{2} )^{ - 1} ; \\ du = - 2x(1 + x^{2})^{ - 2} dx \\ \\ dv = e^{x} dx \: ; \: v = e^{x}\end{gathered}

And this remaining integral cancels -

\begin{gathered} \boxed{ \bf \frac{e^{x} }{(1 + x {}^{2})} + C }\\\end{gathered}

Similar questions