Math, asked by palsabita1957, 30 days ago

Find \sf{\frac{dy}{dx} } when y = \sf{ \frac{x^{2} - x + 1 }{x^{2} + x + 1}}

wanted answers with step - by - step
please don't put unnecessary informations to destroy app rules
those who can't understand they no need to mention me in the answer slot

Answers

Answered by rishu6845
2

Answer:

 \bold{ \huge{ \red{ \dfrac{2( {x}^{2}  - 1)}{ {( {x}^{2} + x + 1 )}^{2} } }}}

Step-by-step explanation:

y =  \dfrac{ {x}^{2} - x + 1 }{ {x}^{2} + x + 1 }  \\ differentiating \: withrespect \: to \: x \\  \dfrac{dy}{dx}  =  \dfrac{d}{dx} ( \dfrac{ {x}^{2} - x + 1 }{ {x}^{2} + x + 1 } ) \\  =  \dfrac{( {x}^{2}   +  x + 1) \:  \frac{d}{dx} ( {x}^{2}  - x + 1) - ( {x}^{2} - x + 1) \:  \frac{d}{dx}( {x}^{2} + x + 1)   }{ {( {x}^{2} + x + 1) }^{2} }  \\  =  \dfrac{( {x}^{2}  +x + 1) \: (2x - 1) - ( {x}^{2}  - x + 1) \: (2x + 1) }{ {( {x}^{2} + x + 1) }^{2} }  \\  =  \dfrac{2 {x}^{3}  + 2 {x}^{2} + 2x -  {x}^{2} - x - 1 - 2 {x}^{3}  + 2 {x}^{2}   - 2x -  {x}^{2} + x - 1  }{ ({ {x}^{2} + x + 1) }^{2} }  \\  =  \dfrac{4 {x}^{2}  - 2 {x}^{2}  - 2}{{( {x}^{2}  + x + 1)} ^{2} } \\  =  \dfrac{2 {x}^{2}  - 2}{ {( {x}^{2} + x + 1 )}^{2} }  \\  =  \dfrac{2( {x}^{2} - 1) }{ {( {x}^{2}  + x + 1)}^{2} }

 \large{ \bold{ \pink{ \underline{ \underline{formula \: used}}}}} \\ 1. \blue{  \bold{\dfrac{d}{dx} ( \dfrac{u}{v})  =  \dfrac{v \:  \:  \dfrac{du}{dx} - u \:  \:   \dfrac{dv}{dx}  }{ {v}^{2} } }}   \\ \\ \\ 2.  \bold{ \green{\dfrac{d}{dx} ( {x}^{n} ) = n \:  {x}^{n - 1} }}

Similar questions