Math, asked by Soubhagyatripathi, 11 months ago

find
 {x}^{ \sqrt{x}  }  =  \sqrt{ {x}^{x} }

Answers

Answered by Arceus02
5

ANSWER

 {x}^{ \sqrt{x} }  =  \sqrt{ {x}^{x} }

 =  >  {x}^{ {x}^{ \frac{1}{2} } }  =   {{(x}^{x} )}^{ \frac{1}{2} }

 =  >  {x}^{ {x}^{ \frac{1}{2 } } }  =  {x}^{ \frac{x}{2} }

Bases are same

 =  >  {x}^{ \frac{1}{2} }  =  \frac{x}{2}

Square both sides

 =  > {( {x}^{ \frac{1}{2} } )}^{2}  = ( { \frac{x}{2} })^{2}

 =  > x =  \frac{ {x}^{2} }{4}

  =  > 4x =  {x}^{2}

 =  > 4x = x \times x

 =  >  \frac{4x}{x}  = x

 =  > x = 4

Ans. x=4

Similar questions