Math, asked by khushboo9828, 1 month ago

find that product . pls solve this ​

Attachments:

Answers

Answered by MrImpeccable
2

ANSWER:

To Solve:

  • (p^2qr+pq^2r+pqr^2)(-pq+qr-pr)

Solution:

We are given that,

\implies(p^2qr+pq^2r+pqr^2)(-pq+qr-pr)

Opening the brackets,

\implies p^2qr(-pq+qr-pr) + pq^2r(-pq+qr-pr) + pqr^2(-pq+qr-pr)

Opening the next brackets,

\implies p^2qr(-pq)+ p^2qr(qr)- p^2qr(pr) + pq^2r(-pq)+ pq^2r(qr)- pq^2r(pr) + pqr^2(-pq)+ pqr^2(qr)- pqr^2(pr)

So,

\implies -p^3q^2r+ p^2q^2r^2- p^3qr^2 - p^2q^3r+ pq^3r^2- p^2q^2r^2-p^2q^2r^2+ pq^2r^3- p^2qr^3

\implies -p^3q^2r- p^3qr^2 - p^2q^3r+ pq^3r^2+ pq^2r^3- p^2qr^3+ p^2q^2r^2-2p^2q^2r^2

\implies -p^3q^2r- p^3qr^2 - p^2q^3r+ pq^3r^2+ pq^2r^3- p^2qr^3- p^2q^2r^2

Hence, the product is,

\implies\bf -p^3q^2r- p^3qr^2 - p^2q^3r- p^2qr^3+ pq^3r^2+ pq^2r^3 - p^2q^2r^2

Similar questions