Math, asked by smitamatey5646, 25 days ago

find that value of this ​

Attachments:

Answers

Answered by TheGodWishperer
2

solution:-

 \LARGE\rightarrow \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{\int  ({x}^{5} +  {x}^{7}  +   {x}^{7} )\:    dx}

\LARGE\rightarrow \:  \:  \:  \:  \:  \:\:\mathtt{ \int {x}^{5}dx+  \int {x}^{7}dx  +  \int  {x}^{7}     dx}

\LARGE\rightarrow \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathtt{\frac{ {x}^{5 + 1} }{5 + 1}  +  \frac{ {x}^{7 + 1} }{7 + 1}  +  \frac{ {x}^{9 + 1} }{9 + 1}}

\LARGE \rightarrow \:  \:  \:  \:  \: \:\:\:\: \:  \:  \:  \:  \:  \:  \:  \:  \: \ \mathtt{\frac{ {x}^{6} }{6}  +  \frac{ {x}^{8} }{8}  +  \frac{ {x}^{10} }{10}}

  \large \red{\boxed { \mathtt{ANSWER - option \:  \: 4th}}}

NOTE:-

while doing integration the power of variable increases by 1 and resultant is divided by variable.

Additional information

  •  \int sin\theta = -cos\theta
  •  \int cos\theta = sin\theta
  •  \int lnx= \frac{1}{x}
  •  \int e^x= e^x
Similar questions