Math, asked by mmalik3834, 1 year ago

find the 10th term of an ap root(3),root(12), root(27),..............

Answers

Answered by Anonymous
7
d=b-a=√12-√3
a=√3
tn=a+(n-1)d
t10=√3+9(√12-√3)
=√3+9√12-9√3
=9√12-8√3
=10√3

shpriyanshu: √12=2√3
shpriyanshu: 2√3-√3=√3
shpriyanshu: a=√3, d=√3 t10=√3+9√3=10√3
Answered by NainaMehra
21
\underline{\bold{Answer:-}}

Given AP:-

 \sqrt{3}  , \:  \sqrt{12}  , \:  \sqrt{27}  ,.........


It can be written as :-

 \sqrt{3}  , \: 2 \sqrt{3}  , \:3  \sqrt{3} ,.......

First term a = √3


Common Difference

d = 2 \sqrt{3}  -  \sqrt{3}  \\  \\  =  > d =  \sqrt{3} (2 - 1) \\  \\  =  > d =  \sqrt{3}

We know that Tn is given by :-

Tn = a + ( n - 1 )*d



T10 = a + ( 10 - 1 )* d


=> T10 = a + 9d


=> T10 = √3 + 9 ( √3 )


=> T10 = √3 + 9√3


=> T10 = √3 ( 1 + 9 )


=> T10 = 10√3.



\textbf{Hope it helps!}

Anonymous: :)
BrainlyQueen01: ᴳᴿᴱᴬᵀ
Similar questions