Math, asked by renzian7, 6 months ago

Find the 10th term of the sequence 1000, -500, 250, -125, ...

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\textsf{Sequence is 1000, -500, 250, -125, .  . . . . .}

\underline{\textbf{To find:}}

\textsf{10 th term of the given sequence}

\underline{\textbf{Solution:}}

\underline{\textbf{Concept used:}}

\mathsf{The\;n\;th\;term\;of\;the\;G.P\;a,ar,ar^2,\;.\;.\;.\;.\;.is}

\boxed{\mathsf{t_n=a\,r^{n-1}}}

\textsf{Clearly, the Sequence is 1000, -500, 250, -125, .  . . . . .is G.P}

\mathsf{Common\;ratio\;(r)=\dfrac{t_2}{t_1}=\dfrac{-500}{1000}}

\implies\mathsf{r=\dfrac{-1}{2}}

\mathsf{Also,\;a=1000}

\textbf{10 th term of the sequence}

\mathsf{t_{10}=a\,r^{9}}

\mathsf{t_{10}=1000\left(\dfrac{-1}{2}\right)^{9}}

\mathsf{t_{10}=1000\left(\dfrac{-1}{2^9}\right)}

\mathsf{t_{10}=125{\times}8\left(\dfrac{-1}{2^6{\times}2^3}\right)}

\mathsf{t_{10}=125\left(\dfrac{-1}{2^6}\right)}

\implies\boxed{\mathsf{t_{10}=\dfrac{-125}{64}}}

\therefore\mathsf{10\;th\;term\;of\;the\;sequence\;is\;\dfrac{-125}{64}}

\underline{\textbf{Find more:}}

Find the value of x+y+z if 1,x,y,z,16 are in G.P.

https://brainly.in/question/4624683  

. Find the common ratio of GP root 2,root8,root32, . . . . . .  

https://brainly.in/question/17601410  

Similar questions