Math, asked by subashrsubash252, 5 months ago

find the 11th term in the expansion of (x+3/x)²⁰​

Answers

Answered by mjayshree937
0

Answer:

(2x−x21)25

Total terms = 26

11th term from last = 16th term from start.

⇒n=15

tn+1=mCn.am−nbn in (a+b)m

∴t16=26C15(2n)11(x2−1)15

=−26C15×211×x30x11

=−26C15×211×x−19

Answered by Anonymous
6

Step-by-step explanation:

Middle term = 11th term

 \sf \:  = T_{ \:  r+1} \\  \sf = { {}^{n}C_r ...x {}^{n - r}  {a}^{r} } \\  \sf \:  =  \:  {}^{20}C_r \bigg(x {}^{2}  \bigg) {}^{20 - r \bigg({ \dfrac{3}{r}  \bigg) }^{r} }

put r = 10

  \sf{T_{10+1}}\sf \:  =  \:  {}^{20}C_{10} \bigg(x {}^{2}  \bigg) {}^{10 \bigg({{\dfrac{3}{x}  \bigg) }^{} {}^{10}  } }

\sf=  \:  {}^{20}C_{10}  \:  \: x {}^{20}   {}^{10 {{\dfrac{3 {}^{10} }{x {}^{10} }  }}}

 \color{lime}\sf \: T_{10+1} =   \:  {}^{20}C_{10}  \:  \: x {}^{10}   {3}^{10   }

Similar questions