Math, asked by priyade1925, 10 months ago

Find the 12th term from end of the ap,1,4,7, 88

Answers

Answered by Anonymous
2

\sf\blue{Question}

\sf{Find \ the \ 12^{th} \ term \ from \ end \ of \ the \ AP}

\sf{1, \ 4, \ 7,...,88}

_______________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ 12^{th} \ term \ from \ the \ end \ is \ 55.}

\sf\orange{Given:}

\sf{The \ given \ AP \ is}

\sf{\implies{1, \ 4, \ 7,...,88}}

\sf\pink{To \ find:}

\sf{12^{th} \ term \ from \ the \ last.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ AP \ is}

\sf{\implies{1, \ 4, \ 7,...,88}}

\sf{Here \ a=1, d=4-1=3, \ t_{n}=88}

\boxed{\sf{t_{n}=a+(n-1)d}}

\sf{\therefore{88=1+(n-1)3}}

\sf{\therefore{3(n-1)=88-1}}

\sf{\therefore{3(n-1)=87}}

\sf{\therefore{n-1=\frac{87}{3}}}

\sf{\therefore{n=29+1}}

\sf{\therefore{n=30}}

\sf{Second \ term \ from \ last=(n-1)^{th} \ term}

\sf{\therefore{12^{th} \ term\ from \ the \ last=(n-11)^{th} \ term}}

\sf{=(30-11)^{th} \ term=19^{th} \ term}

\sf{\therefore{t_{19}=1+(19-1)3}}

\sf{\therefore{t_{19}=1+18(3)}}

\sf{\therefore{t_{19}=1+54}}

\sf{\therefore{t_{19}=55}}

\sf\purple{\tt{\therefore{The \ 12^{th} \ term \ from \ the \ end \ is \ 55.}}}

Answered by ingalecd07
0

Answer:

The sequence is an A.P as common difference is same.

d = 3

tn = a + (n-1)×d

a = first term = 1

tn = last term = 88

common difference d = 3

substituting values

88 = 1 + (n-1)×3

88 = 1 + 3n-3

88 = -2+3n

90 = 3n

n = 90/3

n = 30.

There are 30 terms in A.P

t19 will be 12th term from end

t19 = 55

Mark Brainliest !!!!!

Similar questions