Math, asked by owner38, 11 months ago

Find the 12th term of a G.P whose 8th term is 192 and common ratio is 2​

Answers

Answered by harshdeep1273
5

hope it will help you

Attachments:
Answered by BraɪnlyRoмan
38

\huge \boxed{ \underline{ \underline{ \bf{Answer}}}}

\underline{ \bf{Given :}}

 {8}^{th} term({a}_{8}) = 192.

Common ratio (r) = 2

\underline{ \bf{To \: find \: :}}

{12}^{th} term of the G.P

\underline{ \bf{Process :}}

\implies \: a_{n} \: = \: a {r}^{n - 1}

\implies \: a_{8} \: = \: a {r}^{8- 1}

\implies \: a_{8} \: = \: a {r}^{7}

\implies \: 192 = a {(2)}^{7}

\implies \: a \: = \: \frac{192}{({2})^{7}} \: \: \: \: \: \: \: \: \: \rightarrow(1)

Now,

a_{12} \: = \: a ({ r})^{12 - 1}

a_{12} \: = \: a ({ r})^{11}

\: \: \: \: \: \: \: = \: \frac{192}{ {(2)}^{7} } \times {(2)}^{11} (from 1)

\: \: \: \: \: \: \: = \:192 \: \times \: {(2)}^{11 - 7}

\: \: \: \: \: \: \: = \: 192 \: \times \: {(2)}^{4}

\: \: \: \: \: \: \: = \: 192 \: \times \: 16

\: \: \: \: \: \: \: = \: 3072

\boxed{\therefore \: \bf{{12}^{th} \: term \: = \: 3072 \: }}

Similar questions