Math, asked by Layebah, 10 months ago

Find the 15th term from the end of the A.P 5,8,11,………92
pls ans this fast

Answers

Answered by SarcasticL0ve
11

Given:-

  • AP = 5,8,11,.......92

  • First term (  \sf a_1 ) = 5

  • Last term (  \sf a_n ) = 92

  • Common difference = (  \sf a_2- \sf a_1 ) = 8 - 5 = 3

To find:-

  • 15th term (  \sf a_{15} ) = ?

Solution:-

\bold{\underline{\boxed{\sf{\pink{\dag \; \sf a_{15} = a + 14d}}}}}

Putting given values:-

\implies \sf{ \sf a_{15} = 5 + 14 \times 3}

\implies \sf{ \sf a_{15} = 5 + 42}

\implies \sf{ \sf a_{15} = 47}

\bold{\underline{\underline{\sf{\pink{\dag \; Hence \; 15th \: term \; of \; AP = 47.}}}}}

\rule{200}{2}

Answered by niranalex6
2

Answer:

a15= 47

Step-by-step explanation:

a1= 5                        (Given)

a2=8                        (Given)

an=92                      (As said in the question from the end term)

Common Difference (d)= a2-a1

                                      =8-5

                          thus d =3

Therefore a15 = a1 + 14d                            ( a1 or a is the same)

                        =5 + (14 x 3)                        ( ALWAYS MULTIPLY then add)  

                        =5 + 42

      Hence a15= 47

    Hope This Answer Has Helped U All Please Mark Me As The Brainliest !!!

Similar questions