Math, asked by Anonymous, 3 days ago

Find the 16th term of an A.P., whose 1st term is 15 and common difference is -2.

Answers

Answered by anshdeepsinghisking
3

Answer:

please mark as brainiliest and hit the like

Step-by-step explanation:

a= 15 and d = -2

a16=?

a + 15d

15 + 15 × -2

15-30

-15

therefore a16 = -15

Answered by MяMαgıcıαη
63

Answer:

  • 16th term of an A.P = -15

Explanation:

\underline{\sf{\bigstar\:Given\:information}}

\sf Find\:the\:16^{th}\:term\:of\:an\:A.P\:whose\:1^{st}\:term \sf is\:15\:and\:common\:difference\:is\:-2.

  • \sf First\:term\:(a) = \bf{15}
  • \sf Common\:difference\:(d) = \bf{-2}
  • \sf a_{16} =\:?
  • \sf Number\:of\:terms\:(n) = \bf{16}

\underline{\sf{Using\:formula,}}

\qquad\bf{\dag}\:{\underline{\boxed{\bf{\pink{a_{n} = a + (n - 1)d}}}}}

\underline{\sf{Putting\:all\:values,}}

\\ \twoheadrightarrow\:\sf a_{16} = 15 + (16 - 1)-2\qquad\quad-\:(1)

\\ \twoheadrightarrow\:\sf a_{16} = 15 + (15)-2

\\ \twoheadrightarrow\:\sf a_{16} = 15 + (15\:\times\:-2)

\\ \twoheadrightarrow\:\sf a_{16} = 15 + (-30)

\\ \twoheadrightarrow\:\sf a_{16} = 15 - 30

\\ \twoheadrightarrow\:\bf \Big|\red{a_{16} = -15}\Big|

  • \small{\underline{\bf{Hence,\:16^{th}\:term\:of\:an\:A.P\:is\:-15.}}}

\underline{\sf{\bigstar\:Verification}}

\\ \twoheadrightarrow\:\sf a_{16} = 15 + (16 - 1)-2\qquad-\:From\:(1)

\\ \underline{\sf{Putting\:value\:of\:a_{16}\:in\:above\:eq^{n},}}

\\ \twoheadrightarrow\:\sf -15 = 15 + (16 - 1)-2

\\ \twoheadrightarrow\:\sf -15 = 15 + (15)-2

\\ \twoheadrightarrow\:\sf -15 = 15 + (15\:\times\:-2)

\\ \twoheadrightarrow\:\sf -15 = 15 + (-30)

\\ \twoheadrightarrow\:\sf -15 = 15 - 30

\\ \twoheadrightarrow\:\sf -15 = -15

\\ \twoheadrightarrow\:\bf \Big|\purple{LHS = RHS}\Big|

  • \underline{\bf{Hence,\:Verified\:\checkmark}}

\\ {\underline{\sf{\bigstar\:Knowledge\:BoosteR}}}

  • \underline{\bf{What\:is\:an\:A.P?}}

An arithmetic progression (A.P) is a list of numbers in which each term is obtained by adding a fixed number to the preceding term except the first term.

  • \underline{\bf{What\:is\:common\:difference?}}

The fixed number which is added to preceding term to get next term is called common difference. Note :: Common difference can be zero, negative or positive.

\qquad{\boxed{\underline{\underline{\bf{\bigstar\:Formulae\:related\:to\:A.P\:\bigstar}}}}}

\:

\underline{\sf{n^{th}\:term\:of\:an\:A.P}}

\\ \mapsto\:\boxed{\bf{a_{n} = a + (n - 1)d}}

\:

\underline{\sf{Sum\:of\:n\:terms\:of\:an\:A.P}}

\\ \mapsto\:\boxed{\bf{S_{n} = \dfrac{n}{2}\Big[2a + (n - 1)d\Big]}}

▬▬▬▬▬▬▬▬▬▬▬▬


MasterDhruva: Perfect :D
Similar questions