Math, asked by yashbhagat1001, 2 months ago

find the 19th term of the following A.P , 7,13,19,25....l​

Answers

Answered by Anonymous
9

Given Sequence

7,13,19,25 ,,,,,,

⇒First term (a) = 7

⇒Common difference(d) = a₂-a₁= 13-7 = 6

⇒Number of term (n) = 19

To find

⇒19th term of ap

Formula

⇒Tₙ = a + (n-1)d

Now we can write as

⇒T₁₉ = 7 + (19-1)×6

⇒T₁₉ = 7 + 18×6

⇒T₁₉ = 7 + 108

⇒T₁₉ = 115

Answer

⇒T₁₉ = 115

                                                     

More Formula about Sequence and series

⇒a,b,c are in AP ; 2b = a+c , GP ; b²=ac and HP ; b = (2ac)/(a+c)

⇒AM = (a+b)/2 , G= √(ab) and H = (2ab)/(a+b)

⇒A≥G≥H        In Equality Based

Answered by Anonymous
78

Answer:

  \large \underline{\sf\pmb{Given}}

 :  \implies  \sf{A.P  =  7,13,19,25...}

  \large \underline{\sf \pmb{To \: Find }}

  : \implies \sf{19th \:  term  \: of A.P}

 \large \underline{\sf\pmb{Using \:  Formula }}

 :  \implies {\underline {\boxed{ \sf{T_n=a+(n-1)d}}}}

Where

  • ⇒ tn = nth term
  • ⇒ n = Number of Term
  • ⇒ a = First term
  • ⇒ d = Common deference

 \large \underline {\sf \pmb{Solution}}

 \bigstar \:  \frak{Here  \: we \:  know \:  that:}

  • ⇒ First Term = 7
  • ⇒ Number of Term = 19

 \bigstar \:  \frak{\: Finding  \: Common \:  Differences   \: between  \: terms}

  : \implies\sf{a_2-a_1}

 :  \implies \sf{13 - 7}

 :  \implies \sf{6}

  • ⇒ The common difference between terms is 6.

 \bigstar \:  \frak{Now \:  Finding \:  19th \:  Term}

 : \implies { \sf{T_n=a+(n-1)d}}

  • ⇒ Substituting the values

 : \implies { \sf{T_{19}=7+(19-1)6}}

 : \implies { \sf{T_{19}=7+(18 \times 6)}}

 : \implies { \sf{T_{19}=7+108}}

 : \implies { \sf{T_{19}=115}}

  • Hence, The 19th term is 115.

 \large \underline{ \sf \pmb{More \: Useful  \: Formulae}}

★ Formula to find the numbers of term of an AP:

  •   : \implies \sf{n= \bigg[ \dfrac{(l - a)}{d}  \bigg]}

★ Formula to find the tsum of first n terms of an AP:

  •   :  \implies\sf{S_n= \dfrac{n}{2} (a + l)}

★ Formula to find the sum of squares of first n natural numbers of an AP:

  •  :  \implies \sf{S =  \dfrac{n(n + 1)(2n + 1)}{6} }

★ Formula to find the nth term of an AP is the square of the number of terms:

  •   : \implies \sf{S =  {n}^{2} }

★ Formula to find the sum of of an AP:

  •   : \implies \sf{S = n(n+1)}
Similar questions