Math, asked by gulshan14380, 10 months ago

find the
2 1]
If A =
and B =
1 3
matrix X such that AX = B.
L-11
solve it plz .​

Answers

Answered by premlatakapoor5
0

Answer:

Don't know the answer expecting from someone else.

Answered by MissSolitary
2

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \underline{ \underline{{ \huge{ \textbf{ \textsf{M}}}}{ \tt{ATRIX \:  \:  \: }}}}}

 \underline{ \underline{{ \huge{ \blue{ \mathfrak{Q}}}}{ \bold{ \green{UES}}}{ \red{ \bold{TION -}}}}}

{\tt{If \:  A = \left[ \begin{array}{c c } \sf  2& \sf 1\\\\ \sf \: 1& \sf \: 3 \end{array} \right] and  \: B = \left[ \begin{array}{c c } \sf  3\\\\ \sf \: -11 \end{array} \right];}}

find the matrix X such that AX = B.

\underline{ \underline{{ \huge{ \blue{ \mathfrak{A}}}}{ \bold{ \green{NS}}}{ \red{ \bold{WER -}}}}}

{\tt{A = \left[ \begin{array}{c c } \sf  2& \sf 1\\\\ \sf \: 1& \sf \: 3 \end{array} \right]_{2×2}}} \\\\{ \tt{ B = \left[ \begin{array}{c } \sf  3\\\\ \sf \: -11 \end{array} \right]_{2 \times 1}}}

{\tt{Let \:  X = \left[ \begin{array}{c } \sf  a \\\\ \sf  b  \end{array} \right]}}

AX = B

\implies{\tt{  \left[ \begin{array}{c c } \sf  2&amp; \sf 1\\\\ \sf \: 1&amp; \sf \: 3 \end{array} \right] \left[ \begin{array}{c } \sf  a  \\\\ \sf  b  \end{array} \right] = \left[ \begin{array}{c } \sf  3\\\\ \sf \: -11 \end{array} \right]}} \\\\\\ \implies{\tt{\left[ \begin{array}{c } \sf  2a + b\\\\ \sf \: a + 3b \end{array} \right] = \left[ \begin{array}{c } \sf  3\\\\ \sf \: -11 \end{array} \right] }} \\\\\\ \implies{\tt{ 2a + b = 3 \: \: \: ...(i) ×3}}</p><p>\\ \implies{\tt{a + 3b = -11 \: \: \: ...(ii) ×1 }}

6a + 3b = 9

a + 3b = -11

(-) (-) (-)

__________

5a = 20

a = 20/5

\boxed{{\tt{\therefore \: a = 4}}}

On putting the value of a in eq. (i)

2a + b = 3

2 × 4 + b = 3

8 + b = 3

b = 3 - 8

\boxed{{\tt{\therefore \: b = -5}}}

{\tt{\therefore \: X = \left[ \begin{array}{c } \sf  a \\\\ \sf  b  \end{array} \right] = \red{ \left[ \begin{array}{c } \sf  4 \\\\ \sf  -5  \end{array} \right] \:  \:  \:  \: ans.. \: }}}

_____________________

@MissSolitary✌️

Similar questions