Math, asked by MDwaseembhat1339, 1 month ago

Find the 20th term of the A.P whoes 3rd term is 7 and 8th term is 17

Answers

Answered by Anonymous
12

 \frak \blue{Given:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \frak{a3 = 7}

 \footnotesize \frak{a8 = 17}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\frak \blue{Solution:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \frak{a3 = 7}

 \footnotesize \frak{a + 2d = 7   -  -  - -  -  -  -eq( 1)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \frak{a8 = 17}

 \footnotesize \frak{a + 7d = 17   -  -  - -  -  -  -eq( 2)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \frak \blue{Now \:  solve  \: eq(1)  and (2)  \: by \:  elimination  \: method}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \frak{a + 2d = 7 }

 \footnotesize \frak{a + 7d = 17 }

 \blue {-   \:  \:  \:  -   \:  \:  \: - }

 \footnotesize \frak{ \:  \:  \:  \:  - 5d= - 10 }

 \footnotesize \frak{ \:  \:  \:  \:  \cancel - 5d=  \cancel- 10 }

\frak{ \:  \:  \:  \:  d=   \frac{10}{5} }

\frak{ \:  \:  \:  \:  d=    \cancel\frac{10}{5} }

 \boxed{ \boxed{\blue \bullet\frak{ \:  \:  \:  \:   d=  2 }}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \frak \blue{Now \:  substitute  \: the \:  value  \: of \:  d \:  in  \: eq (1)}

 \footnotesize \frak{a + 2d = 7 }

 \footnotesize \frak{a + 2 \times 2= 7 }

 \footnotesize \frak{a + 4= 7 }

 \footnotesize \frak{a = 7  - 4}

 \boxed{ \boxed{\blue \bullet\frak{ \:  \:  \:  \:   a=  3 }}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \frak \blue{Now \:  find \:  20th  \: term}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \frak{a20 = a + 19d}

 \footnotesize \frak{a20 = 3 + 19 \times 2}

 \footnotesize \frak{a20 = 3 + 38}

 \boxed{ \boxed{\blue \bullet\frak{ \:  \:  \:  \:   a20=  41}}}

Similar questions