Math, asked by charu47Sa, 11 months ago

Find the 21st term of an A.P whose 15th term is 25 and 29th term is 46.Show that 29 does not belong to A.P.

Answers

Answered by cheshtamalik24
3

Answer: 21st term is 34

Step-by-step explanation:

I have attached the solution (note: An is referred as Tn)

Hope it helps

Please mark brainliest

Regards

Attachments:
Answered by Anonymous
14

Given:

\\\\

t_{15} = 25 \\\\  t_{29} = 46 \\  \\

\\

To Find:

\\\\

21_{st} term of the same AP

\\\\\\

Answer:

\\

Explanation:

\\\\

We know that,

\\

General term of an AP = a + (n-1)d

\\\\

In the question , 15_{th} and 29_{th} terms of AP are given.

\\\\

15_{th} \: term \:  = a + (n - 1)d \\ 25 = a + (15 - 1)d \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ 25 = a + 14d \:  \:  \:  \:  \: ...... (1) \:  \:  \:  \:  \:  \:  \:  \\  \\

Similarly,

29_{th} \: term \:  = a + (n - 1)d \\ 46 = a + (29 - 1)d \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ 46 = a + 28d \:  \:  \:  \:  \:  \: .......(2) \:  \:  \:  \:  \:  \\  \\

Subtracting equation (2) from (1) , we get:

\\

a + 14d - a - 28d = 25 - 46

-14d = -21

d =  \dfrac{21}{14}  \\ d =  \dfrac{3}{2}    \:  \: \\  \\

Substituting the value of d in equation (1), we get:

\\\\

25 = a + 14 \times  \dfrac{3}{2}  \\ 25 = a + 21 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ a = 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\

To Calculate:

\\\\

t_{21}  = a + 20d  \:  \:  \:  \:  \:  \: \\  t_{21} = 4 + 20 \times  \dfrac{3}{2}  \\  t_{21}  = 4 + 30 \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  t_{21} = 34 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\

Therefore, the answer is 34.

\\\\

Also, we need to prove that 29 is not a term of the above AP.

\\

We know that,

General Term of an AP = a + (n-1)d

where,

a = first term (Can be Integer , fraction or decimal )

n = Number of terms of AP( Can only be natural number i.e. above 1)

d = common difference (Can be Integer , fraction or decimal )

\\

29 = 4 + (n-1)\dfrac{3}{2}

29 - 4 = \dfrac{3}{2}(n-1)

Cross multiplying, we get:

50 = 3n - 3

3n = 53

n = \dfrac{53}{3}

\\

Since , the position of a number of an AP can only be natural number and not fraction.

So, 29 does not belong to the above AP.

Hence Proved.

\\\\\\

Other AP Formulas:

\\

nth term of an AP formulas

\\\\\sf1) \: n_{th} \: term \: of \: any \: AP \: = a + (n - 1)d\\

\sf2)\: n_{th} \: term \: from \: the \: end \: of \: an \: AP \: = a + (m - n)d\\

\sf3)\:n_{th} \: term \: from \: the \: end \: of \: an \: AP = l - (n - 1)d\\

\sf4)\:Difference \: of \: two \: terms = (m - n)d

where m and n is the position of the term in AP\\\\

\sf5)\:Middle\:Term\:of\:an\:AP

\sf(i) \: If \: n \: is \: odd = \frac{n + 1}{2}\: th\: term

\sf(ii) \:If \: n \: is \: even = \frac{n}{2} \:th \: term \: and \: ( \frac{n}{2} + 1)th \: term\\\\\\

Sum Formulas

\\\\\sf1)\:Sum \: of \: first \: n \: terms \: of \: an \:AP = \frac{n}{2} [ \: 2a + (n - 1)d \: ]\\

\sf2)\:Sum \: of \: first \: n \: natural \: numbers = \frac{n(n + 1)}{2}\\

\sf3)\:Sum \: of \: AP \: having \: last \: term = \frac{n}{2} [ \: a + l \: ]\\

Similar questions