Math, asked by harshdhillon5009, 10 months ago

Find the 23 term of AP 100 96 92

Answers

Answered by Anonymous
50

\large{\boxed{\bf{Answer}}}

188

__________________________

Given :-

• An AP as 100, 96, 92.......

To Find :-

• 23rd term of AP.

_________________________

\large{\boxed{\bf{Solution}}}

• First term, a = T1 = 100

• Second term T2 = 96

d = T2 - T1 = 96 - 100 = - 4

The nth term of an AP is given by :-

Tn = a + (n - 1)d

T23 = 100 + (23 - 1)(-4)

=> 100 + 22 × (-4)

=> 100 - 88

=> 12

Hence, 23rd term of AP is 12.

__________________________

Answered by Anonymous
6

Answer :

{\red\bigstar\Large\bold{\underline{\textsf{\green{Given:}}}}}

A.P. = 100, 96, 92, ...

{\red\bigstar\Large\bold{\underline{\textsf{\green{To\:Find:}}}}}

\sf {23}^{rd}\:term

{\red\bigstar\Large\bold{\underline{\textsf{\green{Sølution:}}}}}

First term ,

a = 100

Common difference ,

d = 96 - 100 = -4

Number of terms ,

n = 23

☯ Formula Used :

\large\bold{\boxed{\boxed{\sf{\blue{ a_n\:=\:a\:+\:(n\:-\:1)d}}}}}

\sf {a}_{23}\:=\:100\:+\:(23\:-\:1)-4

\sf {a}_{23}\:=\:100\:+\:(22)-4

\sf {a}_{23}\:=\:100\:-\:88

\sf {a}_{23}\:=\:12

\large\bold{\boxed{\sf{\pink{ {a}_{23}\:=\:12}}}}

_____________________

Similar questions