Math, asked by Vatsalchauhan40, 8 months ago

find the 25th term of AP 5,9/2,4, 7/2, 3.....​

Answers

Answered by ItzAditt007
8

Answer:-

The 25th term is -6.

Explanation:-

Given:-

  • An AP 5, 9/2, 4, 7/2, 3....

To Find:-

  • The 25th term of the AP.

Formulae Used:-

d = a2 - a.

an = a + (n-1)d.

Where,

  • d = Commond difference.
  • a2 = Second term.
  • a = First term.
  • n = Number of terms.
  • an = nth term.

So Here,

  • d = ??.
  • a2 = 9/2.
  • a = 5.
  • n = 25.
  • an (i.e. 25th term) = ?? [To Find].

Now,

Let us first find out the value of d.

↦ d = a2 - a.

↦ d = 9/2 - 5.

↦ d = (9-10)/2. (Taking LCM).

↦ d = -1/2.

So The Common Difference Of The AP Is -1/2.

So Lets find out the value of 25th term.

↦ an = a + (n-1)d.

↦ a25 = 5 + (25-1)(-1/2).

↦ a25 = 5 + (24)(-1/2).

↦ a25 = 5 + (-24/2).

↦ a25 = 5 + (-12).

↦ a25 = 5 - 12.

a25 = -6.

Therefore The 25th Term Of The Given AP Is -6.

Answered by Anonymous
4

 \bf \large \underline \red{Answer :  - } \\

 \bf \underline \purple{Given : }

  • Given AP is 5,9/2,4,7/2,3....

 \bf \underline \purple{To \:   \:  find : }

  • 25 th term of AP!!!

 \bf \underline \purple{Formula  \:  \: used :  }

 {\bf {\boxed {\underline{a_n = a+(n-1) d}}}}

 \bf \underline \purple{Need  \:  \: to  \:  \: know : }

 \bf \star \: a = first \:  \: term \\  \\ \bf \star \:d = common \:  \: difference \\  \\ \bf \star \:n =  {n}^{th}  \:  \: term \:

 \bf \large  \underline \red{Solution : }

 \star \: a_1 = 5 \\   \star \: a_2 =  \frac{9}{2}  \\  \star \: a_3 = 4 \\  \star \: a_4 =  \frac{7}{2}  \\  \star \: a_5 = 3

First find out the common difference:-

 \bf \large \: d = a_2 \:  - a_1

 \bf \large \: d =  \frac{9}{2}  - 5 \\  \\  \bf \large \: d =  \frac{9 - 10}{2}  \\  \\  \bf \large \: d =  \frac{ - 1}{2}

Now, find 25 th term of AP!!!

 \bf \large \implies \: a_{25} = a + (n - 1)d \\  \\  \bf \large \implies \: a_{25} =5 + (25 - 1) \frac{ - 1}{2}  \\  \\  \bf \large \implies \: a_{25} =5 + (24) \frac{ - 1}{2}  \\  \\  \bf \large \implies \: a_{25} =5 -  \frac{24}{2}  \\  \\  \bf \large \implies \: a_{25} =5 - 12 \\  \\  \bf \large \implies \: a_{25} = - 7

 \bf \large \:  \therefore \:  {25}^{ \: th}  \:  \: term \:  \: of \:  \: AP \:  \: is \:  \:  \pink{ - 7}

Similar questions