Math, asked by sowmya843, 10 hours ago

Find the 3 consecutive terms which are in A P. Whose sum is 27 and sum of their squares is
293.​

Answers

Answered by mathdude500
31

\large\underline{\sf{Solution-}}

Let assume that three consecutive terms in AP series be

\begin{gathered}\begin{gathered}\bf\: \begin{cases} &\sf{x - y} \\  \\ &\sf{x}\\ \\  &\sf{x + y} \end{cases}\end{gathered}\end{gathered}

So, According to statement

Sum of three terms of AP is 27

\rm \: x - y + x + x + y = 27

\rm \: 3x = 27

\rm\implies \:\boxed{\tt{  \: x \:  =  \: 9 \: }} \\

According to statement again,

Sum of the squares of 3 terms is 293

\rm \:  {(x - y)}^{2} +  {x}^{2} +  {(x + y)}^{2} = 293

\rm \:  {x}^{2} +  {y}^{2} - 2xy +  {x}^{2} +  {x}^{2} +  {y}^{2} + 2xy = 293

\rm \:  {3x}^{2} + 2 {y}^{2} = 293

On substituting the value of x = 9, we get

\rm \:  {3(9)}^{2} + 2 {y}^{2} = 293

\rm \:  243 + 2 {y}^{2} = 293

\rm \:  2 {y}^{2} = 293 - 243

\rm \:  2 {y}^{2} = 50

\rm \:   {y}^{2} = 25

\rm\implies \:\boxed{\tt{  \: y \:  =  \:  \pm \: 5}} \\

So, Two cases arises.

Case :- 1

When x = 9 and y = 5

So, three consecutive terms are

\begin{gathered}\begin{gathered}\bf\: \begin{cases} &\sf{x - y = 9 - 5 = 4} \\  \\ &\sf{x = 9}\\ \\  &\sf{x + y = 9 + 5 = 14} \end{cases}\end{gathered}\end{gathered}

Case :- 2

When x = 9 and y = - 5

So, three consecutive terms are

\begin{gathered}\begin{gathered}\bf\: \begin{cases} &\sf{x - y = 9 + 5 = 14} \\  \\ &\sf{x = 9}\\ \\  &\sf{x + y = 9  -  5 = 4} \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Similar questions