Math, asked by dhruvbora57, 2 months ago

find the 31 term of an ap whose 11 term is 38 and 16 term is 73

Answers

Answered by SavageBlast
2

Given:-

  • 11th term of an A.P = 38

  • 16th term of an A.P = 73

To Find:-

  • 31st term of an A.P

Formula Used:-

  • {\boxed{\bf{a_n=a+(n-1)d}}}

Solution:-

As given,

\sf :\implies\:a_{11}= 38

\sf :\implies\:a+(n-1)d= 38

\sf :\implies\:a+(11-1)d= 38

\sf :\implies\:a+10d= 38

\bf :\implies\:a= 38-10d ____{1}

And,

\sf :\implies\:a_{16}= 73

\sf :\implies\:a+(n-1)d= 73

\sf :\implies\:a+(16-1)d= 73

\bf :\implies\:a+15d= 73

Putting Value of a,

\sf :\implies\:38-10d+15d= 73

\sf :\implies\:38+5d= 73

\sf :\implies\:5d= 73-38

\sf :\implies\:d=\dfrac{35}{5}

\bf :\implies\:d= 7

Putting value of d in {1},

\sf :\implies\:a= 38-10\times 7

\sf :\implies\:a= 38-70

\bf :\implies\:a= -32

Now,

\sf :\implies\:a_{31}=a+(n-1)d

\sf :\implies\:a_{31}=-32+(31-1)7

\sf :\implies\:a_{31}=-32+30\times7

\sf :\implies\:a_{31}=-32+210

\bf :\implies\:a_{31}=178

Hence, 31st term of an A.P is 178.

━━━━━━━━━━━━━━━━━━━━━━━━━

More Formulas related to A.P:-

  • \bf S_n=\dfrac{n}{2}[2a+(n-1)d]

  • \bf S_n=\dfrac{n}{2}[a+a_n]

  • \bf S_n=\dfrac{n}{2}[a+l]

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions