Math, asked by shahanazbegam11, 10 months ago

Find the 31st term of an Ap whose 11th term is 38 and 164h term is 73.​

Answers

Answered by Anonymous
6

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • 11th term is 38.

  • 16th term is 73

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • The 31st term of the same AP

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

\dashrightarrow\sf a_{11}  = 38

 \:\:

 \sf \dashrightarrow a_{16}  = 73

 \:\:

 \underline{\bold{\texttt{We know that,}}}

 \:\:

\purple\longrightarrow an = a + (n − 1) d

 \:\:

 \sf \longmapsto a11 = a + (11 − 1) d

 \:\:

 \sf \longmapsto 38 = a + 10d ----------(1)

 \:\:

 \underline{\bold{\texttt{Similarly,}}}

 \:\:

 \sf \longmapsto a16 = a + (16 − 1) d

 \:\:

 \sf \longmapsto 73 = a + 15d ----------(2)

 \:\:

 \underline{\bold{\texttt{Subtracting (1) from (2), we obtain}}}

 \:\:

 \sf \longmapsto 35 = 5d

 \:\:

 \sf \longmapsto d = 7

 \:\:

 \underline{\bold{\texttt{From equation (1),}}}

 \:\:

 \sf \longmapsto 38 = a + 10 × (7)

 \:\:

 \sf \longmapsto 38 − 70 = a

 \:\:

 \sf \longmapsto a = -32

 \:\:

 \longmapsto  a31 = a + (31 − 1)d

 \:\:

 \sf \longmapsto a31= − 32 + 30 (7)

 \:\:

 \sf \longmapsto a_{31} = − 32 + 210

 \:\:

 \sf \longmapsto a_{31} = 178

 \:\:

Hence, 31st term is 178.

\rule{200}5

Answered by nidhirandhawa7
0

Answer:

answer is 178

Step-by-step explanation:

pls make it brainlest answer

plsssesssddsssssssssss is over

Similar questions