Math, asked by earbudsstoreeinfo, 3 months ago

Find the 31st term of AP whose 11th term is 38 and the 16th term is 73​

Answers

Answered by 2005manvig
0

Step-by-step explanation:

Hope it help u

pls mark me Brainlist

Attachments:
Answered by Salmonpanna2022
2

Answer:

we know that,

 \tt \red{{{a}}_{{n}} = a + (n - 1)d} \\  \\

______________________________

 \tt{Given \:  {11}^{th}  \: term \: is \: 38} \\  \\

  \tt{{{a}}_{{11}} = a + (11 - 1)d} \\  \\

 \tt{38 = a + (11 - 1)d} \\  \\

 \tt{38 = a + 10d} \\  \\

 \tt{38 - 10d = a} \\  \\

 \tt \blue{a = 38 - 10d} \:  \:  \: ...(1) \\  \\

_______________________________

 \tt{Given \:  {16}^{th}  \: term \: is \: 73} \\  \\

  \tt{{{a}}_{{16}} = a + (16 - 1)d} \\  \\

\tt{{{a}}_{{16}} = a +15d} \\  \\

 \tt{73 = a + 15d} \\  \\

 \tt{73 - 15d = a} \\  \\

 \tt \blue{a = 73 - 15d} \:  \:  \: ....(2) \\  \\

_________________________________

Now,

From equation (1) & (2)

 \tt \blue{38 - 10d = 73 - 15d} \\  \\

⟹ \tt \blue{38 - 73 =  - 15d - 10d} \\  \\

⟹ \tt \blue{ - 35 =  - 5d} \\  \\

⟹ \tt\blue{  \cancel\frac{ \cancel{ -} 35}{  \cancel{-} 5}  = d} \\  \\

⟹ \tt \blue{7 = d} \\  \\

⟹ \tt \red{d = 7}

Putting the value of d in equation (1)

 \tt{a = 38 = 10d} \\  \\

 \tt{a = 38 - 10 \times 7} \\  \\

 \tt{a = 38 - 70} \\  \\

 \tt \blue{a =  - 32} \\  \\

We need to find the 31 st term

So, n = 31 , a = -32 , d = 7

 \tt{We \: need \: to \: find \: {{a}}_{{n}}} \\  \\

 \tt{Putting \: values} \\  \\

 \tt{{{a}}_{{31}} =  - 32(31 - 1)7 }\\

\tt {=  - 32 + 30 + 7} \\

 \tt{ =  - 32 + 210} \\

\tt{ = 178} \\  \\

 \tt \red{Therefore,the \:  {31}^{st} \: term \: of \:  AP \: is \: 178} \: Ans. \\

Similar questions