Math, asked by bkambika80, 4 months ago

find the 35th term of the A.P 20, 17, 14, 11....​

Answers

Answered by Anonymous
77

AnSwer :

  • First term (a₁) = 20
  • Second term (a₂) = 17
  • Third term (a₃) = 14
  • Fourth term (a₄) = 11

We need to find the 35ᵗʰ term of an given A. P

  • First of all we need to find the common difference of an given A.P and then after finding common difference we can find the 35ᵗʰ term of the A.P.

\qquad\dag\:\underline{\textbf{Common Difference (d) : }} \\

:\implies \sf Common \:  Difference = Second  \: term - First  \: term  \\  \\

:\implies \sf d =  a_{2}  -  a_{1} \\  \\

:\implies \sf d =  17  -  20\\  \\

:\implies \underline{ \boxed{ \frak{ d =   - 3}}}\\  \\

\qquad\dag\:\underline{\bf{ {35}^{th}  \: term \: of \: the \:  A.P: }} \\

\dashrightarrow\:\:\sf a_n = a + (n - 1)d \\  \\

Where,

  • aₙ = nᵗʰ term of the A.P
  • a = First term of the A.P
  • d = Common Difference

\dashrightarrow\:\:\sf a_{35} = 20 + (35- 1) \times( -  3) \\  \\

\dashrightarrow\:\:\sf a_{35} = 20 + 34 \times( -  3) \\  \\

\dashrightarrow\:\:\sf a_{35} = 20 + ( -  102) \\  \\

\dashrightarrow\:\:\sf a_{35} = 20 -  102 \\  \\

\dashrightarrow\:\: \underline{ \boxed{\frak{a_{35} =  - 82 }}}\\  \\

Answered by Anonymous
18

AnswEr-:

  • \underline{\boxed{\frak { \:a_{35}  \:or\:35^{th} \:term\:of\:an\:A.P. \: =\: -82 \:}}}

\sf{\dag{\underline {Explanation \:of\:AnswEr \: -:}}}

  • \sf{\underline {Given-:}}

  • A.P = 20 , 17 , 14 , 11 ....

  • \sf{\underline {Here-:}}

  • \sf {First\:Term\:of\:A.P \; or \:(a_{1}) = 20}

  • \sf {Second \:Term\:of\:A.P \; or \:(a_{2}) = 17}

  • \sf {Third \:Term\:of\:A.P \; or \:(a_{3}) = 14}

  • \sf {Fourth \:Term\:of\:A.P \; or \:(a_{4}) = 11}

  • \sf{\underline {To\:Find-:}}

  • The \sf{35^{th}} term of A.P .

\sf{\dag{\underline {Solution\:of\:Question\: -:}}}

  • \underbrace{\sf{\underline {Understanding \:the\:Concept \: }}}

  • We , have to Find the \sf{35^{th}} term of A.P .

  • For Finding this first we have to Find the common differences or (d) of an Given AP .

  • \sf{\dag{\underline {Common\:\:Differences \: or\: (d) \:-:}}}

  • \sf{\underline {Common \:Difference \:\:=\: Second \:Term \:\: - First \:Term\:}}

  • \sf{\underline {Or,}}

  • \sf{\underline { \:D \:\:=\: a_{2} \:\: - a_{1}\:}}

  • \sf{\underline {Here-:}}

  • \sf {Second \:Term\:of\:A.P \; or \:(a_{2}) = 17}

  • \sf {First\:Term\:of\:A.P \; or \:(a_{1}) = 20}

  • \sf{\underline {Then,}}

  • \longrightarrow{\sf { \:D \:\:=\: 17 \:\: - 20\:}}

  • \longrightarrow{\sf { \:D \:\:=\: -3\:}}

  • \sf{\underline {Therefore,}}

  • \boxed{\sf { \:D \:or\:Common \:Difference\:=\: -3\:}}

\sf{\bigstar {Now,}}

\sf{\dag{\underline {35^{th}\:term \:of\:An\:A.P\: -:}}}

  • \sf{\underline { \:a_{n}\:=\: a + ( n -1 ) \: d \:}}

  • \sf{\underline {Here-:}}

  • \sf {First\:Term\:of\:A.P \; or \:(a) = 20}

  • \sf {a_{n} = \:n^{th}\:term\:of\;an\:A.P= 35}

  • \sf { \:D \:or\:Common \:Difference\:=\: -3\:}

  • \sf{\underline {Now,\:By\:Putting\:known\:values-:}}

  • \longrightarrow{\sf { \:a_{35}  \:\:=\: 20 + ( 35 - 1) \times (-3) \:}}

  • \longrightarrow{\sf { \:a_{35}  \:\:=\: 20 + ( 34) \times (-3) \:}}

  • \longrightarrow{\sf { \:a_{35}  \:\:=\: 20 +  (-102) \:}}

  • \longrightarrow{\sf { \:a_{35}  \:\:=\: 20 -102 \:}}

  • \longrightarrow{\sf { \:a_{35}  \:\:=\: -82 \:}}

\sf{\dag{\underline {Hence \: -:}}}

  • \underline{\boxed{\frak { \:a_{35}  \:or\:35^{th} \:term\:of\:an\:A.P. \: =\: -82 \:}}}

_______________________♡______________________

Similar questions