Math, asked by shobiyamarimuthu, 6 months ago

find the √3sinx+cosx=2​

Answers

Answered by Swarup1998
0

Trigonometric Equation Solving

To solve: \sqrt{3}\:sinx+cosx=2

Step-by-step explanation:

Now, \sqrt{3}\:sinx+cosx=2

Divide both sides by 2.

\Rightarrow \frac{\sqrt{3}}{2}\:sinx+\frac{1}{2}\:cosx=1

Since cos30^{\circ}=\frac{\sqrt{3}}{2},\:sin30^{\circ}=\frac{1}{2}, we get

\Rightarrow cos30^{\circ}\:sinx+sin30^{\circ}\:cosx=1

Use the formula: sinA\:cosB+cosA\:sinB=sin(A+B)

\Rightarrow sin(x+30^{\circ})=1

The value of sin90^{\circ} is 1.

\Rightarrow sin(x+30^{\circ})=sin90^{\circ}

Take arcsine or sin^{-1}() on both sides.

\Rightarrow x+30^{\circ}=90^{\circ}

\Rightarrow x=60^{\circ}

Answer:

Therefore the value of x is 60°.

Similar questions