Math, asked by jaydeepjd8209, 5 months ago

Find the 4numbers in ap such that the sum of 2nd and 3rd term is 22 and product of 1at and 4the term is 85

Answers

Answered by Ataraxia
5

Solution :-

Let the four terms of the AP be a, a + d, a + 2d and a + 3d.

We know :-

\boxed{\bf a_n=a+(n-1)d}

According to the first condition :-

\longrightarrow \sf (a+d)+(a+2d) = 22 \\\\\longrightarrow 2a+3d = 22 \\\\\longrightarrow 3d = 22-2a \\\\\longrightarrow d = \dfrac{22-2a}{3} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \ \ \ \ \  \ \ \ ......................(1)

According to the second condition :-

\longrightarrow \sf a(a+3d) = 85 \\\\\longrightarrow a^2+3ad = 85 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \ \ \ \ \  \ \ \ ......................(2)

Substitute the value of d in eq (2) :-

\longrightarrow \sf a^2 + 3 \times a \times \dfrac{22-2a}{3} = 85  \\\\\longrightarrow a^2+a(22-2a) = 85 \\\\\longrightarrow a^2+22a-2a^2 = 85 \\\\\longrightarrow -a^2+22a = 85 \\\\\longrightarrow -a^2+22a-85 = 0 \\\\\longrightarrow a^2-22a+85 = 0 \\\\\longrightarrow a^2-17a-5a+85 = 0 \\\\\longrightarrow a(a-17)-5(a-17) = 0 \\\\\longrightarrow (a-5)(a-17) = 0 \\\\\longrightarrow \bf a = 5 \ , \  a = 17

  • If a = 5, then \sf d = \dfrac{22-2 \times 5} {3}

                                = \sf \dfrac{22-10}{3}

                                 = \sf \dfrac{12}{3}

                                  \bf = 4

     AP = 5 , 9 , 13 , 17

  • If a = 17, then \sf d = \dfrac{22-2 \times 17 }{3}

                                 = \sf \dfrac{22-34}{3}

                                 =\sf  \dfrac{-12}{3}

                                 \sf = -4

     AP = 17 , 13 , 9 , 5

Similar questions