Math, asked by Bsndndkdkdjjdjr1703, 10 months ago

Find the 4th term from the end in the expansion of (x^3/2-2/x^2)^9

Answers

Answered by johnkumarrr4
5

T_{7}=672x^{-3}

Step-by-step explanation:

 Given,\left ( x^{3}/2 -2/x^{2}\right )^{9}

 Binomial expansion     T_{r+1}={^n}C_rx^{n-r}y^{r}

rth term from the end =\left [ \left ( n+1 \right ) -\left ( r-1 \right )\right ]^{th}beginning

                              =\left ( n-r+ 2\right )^{th}beginning

4th term term from end =(9-4+2)^{th}beginning

                                       =7th beginning

                              r+1=7

                                     r=6

                                T_{6+1}={^9}C_6\left ( x^{3}/2 \right )^{9-6}\left ( -2/x^{2} \right )^{6}

                                    T_{7}=9\times 8\times 7/\left ( 3\times 2\times 1 \right )\left ( x^{3}/2 \right )^{3}\left ( -2/x^{3} \right )^{6}

                                    T_{7}=84\times x^{9}/2^{3}\left ( -2 \right )^{6}/x^{12}

                                     T_{7}=84\times 2^{3}\times x^{-3}

                                     T_{7}=672x^{-3}

 

Similar questions