Math, asked by yasharma26, 8 months ago

find the 4x sq +3x+5=0 by completing the square mathod​

Answers

Answered by InfiniteSoul
88

\sf{\underline{\boxed{\big{\pink{Question}}}}}

  • Solve by completing the square  4x^2 + 3x + 5 = 0

\sf{\underline{\boxed{\big{\pink{Solution}}}}}

\sf\implies 4x^2 +3x + 5 = 0

\sf\implies 4x^2 + 3x = -5

  • Divide each term by 4

\sf\implies \dfrac{4x^2}{4} + \dfrac{3x}{4} = \dfrac{-5}{4}

\sf\implies x^2 + \dfrac{3x}{4}= \dfrac{-5}{4}

  • Divide the coefficient of x by 2, and square it and add it on both sides in the equation

\sf\longrightarrow(\dfrac{3}{4\times 2})^2

\sf\longrightarrow(\dfrac{3}{8})^2

  • add the term to each side of the equation

\sf\implies x^2 + \dfrac{3x}{4} + (\dfrac{3}{8})^2 = \dfrac{-5}{4} + ( \dfrac{3}{8})^2

\sf\implies x^2 + \dfrac{3x}{4} + \dfrac({3}{8})^2  = \dfrac{-5}{4} + \dfrac{ 9 }{64}

\sf{\large{\underline{\boxed{\red{\mathsf{a^2+ 2ab + b^2 = ( a + b )^2 }}}}}}

\sf\implies ( x + \dfrac{3}{8})^2 = \dfrac{-5 \times 16 + 9}{64}

\sf\implies ( x + \dfrac{5}{6})^2 = \dfrac{-80+ 9}{64}

\sf\implies ( x + \dfrac{5}{6})^2 = \dfrac{-71}{64}

  • since the roots of any number cannot be negative
  • Therefore this eq. have no roots

\sf{\underline{\boxed{\big{\purple{Equation\: have\: no \: roots }}}}}

Similar questions