Math, asked by unicorn1503, 1 month ago

find the 5th root of 1024\3125​

Answers

Answered by AneesKakar
4

The 5th root of (1024)/(3125) is equal to

Given:

The number is (1024)/(3125).

To Find:

The 5th root of (1024)/(3125).

Solution:

  The\:5th\:root\:of\:1024/3125\:is \:given\:as:\\\\=\sqrt[5]{\frac{1024}{3125} }\\ \\=\sqrt[5]{\frac{4\times4\times4\times4\times4}{5\times5\times5\times5\times5} } \\\\=\sqrt[5]{\frac{4^{5} }{5^{5} } } \\\\=\sqrt[5]{(\frac{4}{5} )^{5} } \\\\=[(\frac{4}{5} )^{5}]^{\frac{1}{5} } \\\\=[(\frac{4}{5} )]^1\\\\=\frac{4}{5}

Therefore the 5th root of (1024)/(3125) is equal to 4/5.

#SPJ2

Answered by pulakmath007
1

\displaystyle \sf   \sqrt[5]{ \frac{1024}{3125} }  =  \frac{4}{5}

Given :

\displaystyle \sf   \sqrt[5]{ \frac{1024}{3125} }

To find :

The value of the expression

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf   \sqrt[5]{ \frac{1024}{3125} }

Step 2 of 2 :

Find the value of the expression

1024

= 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2

= 4 × 4 × 4 × 4 × 4

= 4⁵

3125

= 5 × 5 × 5 × 5 × 5

= 5⁵

Thus we get

\displaystyle \sf   \sqrt[5]{ \frac{1024}{3125} }

\displaystyle \sf  =   \sqrt[5]{ \frac{ {4}^{5} }{ {5}^{5} } }

\displaystyle \sf  =   \sqrt[5]{  {\bigg( \frac{4}{5} \bigg)}^{5}  }

\displaystyle \sf   =  \frac{4}{5}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of (√5+√2)²

https://brainly.in/question/3299659

2. Simplify ( 8+√5)(8-√5).

https://brainly.in/question/17061574

#SPJ2

Similar questions