Math, asked by Shizukaa143, 5 months ago

find the 6th term in the expansion of (3x + y/2) ^9​

Attachments:

Answers

Answered by susu161010
3

Answer:

3x X 9 + y/9 X 9 might be the right answer but the exact answer ‍♀

Answered by swethassynergy
3

The 6th term in the expansion of (3x+\frac{y}{2} )^{9}  is  330.75\ x^{4}\ y^{5} .

Step-by-step explanation:

Given:

Expression (3x+\frac{y}{2} )^{9} .

To Find:

The 6th term in the expansion of (3x+\frac{y}{2} )^{9}.

Formula Used:

(p+q)^{n} = nC0\ p^{n}  +nC1 \ p^{n-1} \ q+  ........... + nCn \ y^{n}

General Term Binomial expression = Tr+1 = nCr\ x^{n-r} \ q^{r} ----formula no.01

Solution:

As given- Expression (3x+\frac{y}{2} )^{9}

Applying formula no.01.

p=3x        and  q=\frac{y}{2}

6^{th} term of Binomial expression  = T(5+1) = 9C5\ (3x)^{9-5} \ (\frac{y}{2} )^{5}

                                                                          =  9C5\ (3x)^{4} \ (\frac{y}{2} )^{5}

                                                                          = \frac{9!}{(9-5)!\ 5!}  \ (81 x^{4} ) (\frac{y^{5} }{32} )

                                                                         = \frac{9!}{4!\ 5!}  \ (81 x^{4} ) (\frac{y^{5} }{32} )

                                                                        = \frac{9!}{4!\ 5!}  \ (\frac{84}{32}) x^{4} \ y^{5}

                                                                         = 330.75\ x^{4}\ y^{5}

                                                                         

Thus,the 6^{th}  term in the expansion of   (3x+\frac{y}{2} )^{9}   is 330.75\ x^{4}\ y^{5} .

Similar questions