Math, asked by jashkheradiya, 1 month ago

Find the 6th term of an AP. 3. 5. 7​

Answers

Answered by sambhav2645
2

common differfence = 5-3=2

An= a1+(n-1)d

=5+(6-1)2

=5+5*2

=5+10

=15

Answered by Anonymous
1

Answer:

{ \large{ \underline { \sf{Given}}}}

 \:  \:  \:  \:  \:  \:  \:  \: { \sf{❍ \: The  \: Terms  \: of \: AP  \: are  \: 3,5,7}}

{ \large{ \underline{ \sf{To  \: Find}}}}

\:  \:  \:  \:  \:  \:  \:  \: { \sf{❍ \: 6th \: Term \: of \: AP??}}

{ \large{ \underline{ \sf{Solution}}}}

  • First We have to use nth term formula, thus we can find 6th term of AP, So for finding this we should have a, d values. Let's start our solution.

━━━━━━━━━━━━━━━━

{\underline{\sf{From\: Question,}}}

  • First term (a) = 3

  • Common difference (d) = 2

  • n = 6

{\underline{\sf{Formula,}}}

  • { \boxed{ \sf{ a_{n} = a + (n - 1)d}}}

{\underline{\sf{By \:  Substituting,}}}

{ \dashrightarrow{ \sf{ a_{6} =  3 + (6 - 1)2}}} \\  \\  \\ { \dashrightarrow{ \sf{ a_{6} =  3 + (5)2}}} \\  \\  \\ { \dashrightarrow{ \sf{ a_{6} = 3 + 10 }}} \\  \\  \\ { \dashrightarrow{ \sf{ a_{6} =13  }}} \\  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { \boxed{ \boxed{ \sf {\therefore{ \pink{6th \: Term \: of \: AP \: is  \: 13}}}}}}

Explanation:

Please Mark as Brainliest :)

Similar questions