Math, asked by Jrajesh9482, 1 month ago

Find the A P whose 6 th term is 10 and 10 th term is 9

Answers

Answered by amansharma264
23

EXPLANATION.

6th terms of an A.P. = 10.

10th terms of an A.P. = 9.

As we know that,

General term of an A.P.

⇒ Tₙ = a + (n - 1)d.

6th terms of an A.P. = 10.

⇒ T₆ = a + (6 - 1)d.

⇒ T₆ = a + 5d.

⇒ a + 5d = 10. - - - - - (1).

10th terms of an A.P. = 9.

⇒ T₁₀ = a + (10 - 1)d.

⇒ T₁₀ = a + 9d.

⇒ a + 9d = 9. - - - - - (2).

From equation (1) & (2), we get.

Subtract equation (1) & (2), we get.

⇒ a + 5d = 10. - - - - - (1).

⇒ a + 9d = 9. - - - - - (2).

⇒ -  -        -

We get,

⇒ - 4d = 1.

⇒ d = - 1/4.

Put the value of d = - 1/4 in equation (1), we get.

⇒ a + 5d = 10.

⇒ a + 5(-1/4) = 10.

⇒ a + (-5/4) = 10.

⇒ a - 5/4 = 10.

⇒ a = 10 + 5/4.

⇒ a = (40 + 5)/4.

⇒ a = 45/4.

First term = a = 45/4.

Common difference = d = -1/4.

Series = a, a + d, a + 2d, a + 3d. . . . . .

Series = 45/4, (45/4 - 1/4), (45/4 + 2(-1/4)), (45 + (-3/4)). . . . .

Series = 45/4, 44/4, 43/4, 42/4. . . . .

                                                                                                                       

MORE INFORMATION.

Supposition of terms in A.P.

(1) = Three terms as : a - d, a, a + d.

(2) = Four terms as : a - 3d, a - d, a + d, a + 3d.

(3) = Five terms as : a - 2d, a - d, a, a + d, a + 2d.

Similar questions