FIND THE ABSOLUTE ERROR IN DENSITY OF A SPHERE OF RADIUS 10.01cm AND MASS OF SPHERE IS 4.692 kg ?
Answers
Answered by
6
Find relative error first and multiply by the density to get absolute error.
R = 10.01 cm
V = 4π/3 R³ = 4π/3 * 10.01³ cm³ = 4201.369 cm³
M = 4.692 kg = 4, 692 gms
Density = Mass / volume
ρ = M / V = (3/4π) M / R³ = 1.1168 gm/cm³
abs. errors: ΔM = 1 gm ΔR = 0.01 cm
Relative error in density:
Δρ / ρ = ΔM / M + ΔV / V
= ΔM / M + 3 ΔR / R
Δρ / ρ = 1 / 4692 + 3 * 0.01 /10.01
= 0.0321
Absolute error in density = 0.0321 * 1.1168 = 0.03584 gm/cm³
R = 10.01 cm
V = 4π/3 R³ = 4π/3 * 10.01³ cm³ = 4201.369 cm³
M = 4.692 kg = 4, 692 gms
Density = Mass / volume
ρ = M / V = (3/4π) M / R³ = 1.1168 gm/cm³
abs. errors: ΔM = 1 gm ΔR = 0.01 cm
Relative error in density:
Δρ / ρ = ΔM / M + ΔV / V
= ΔM / M + 3 ΔR / R
Δρ / ρ = 1 / 4692 + 3 * 0.01 /10.01
= 0.0321
Absolute error in density = 0.0321 * 1.1168 = 0.03584 gm/cm³
kvnmurty:
clik on thanks .. select best ans.
Similar questions