Math, asked by ayush12327, 10 days ago

Find the absolute maxima and absolute minima of the function f(x)=x^2-1 on the interval [-1, 2]​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) \:  =  \:  {x}^{2} - 1 \:  \:  \:  \: x \in \: [ - 1,2] \\

On differentiating both sides w. r. t. x, we get

\rm \:  \dfrac{d}{dx}f(x) \:  =  \:  \dfrac{d}{dx}({x}^{2} - 1) \:  \\

We know,

\boxed{\sf{  \:\rm \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \:  \: }} \\

So, using this, we get

\rm \: f'(x) = 2x \\

For maxima and minima

\rm \: f'(x) = 0 \\

\rm \: 2x = 0 \\

\rm\implies \:x = 0 \\

So, critical points are

\rm \: x =  - 1,0,2 \:  \in \:  \: [ - 1,2] \\

Now, lets evaluate the value of f(x) at critical points.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf f(x) =  {x}^{2} - 1  \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  - 1 & \sf 0 \\ \\ \sf 0 & \sf  - 1 \\ \\ \sf 2 & \sf 3 \end{array}} \\ \end{gathered}

\rm\implies \:f(x) \: is \: minimum \: at \: x = 0 \: and \: min \: value \: is \:  - 1 \\

and

\rm\implies \:f(x) \: is \: maximum \: at \: x = 2 \: and \: max \: value \: is \: 3 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information  :-

Let y = f(x) be a given function.

To find the local maximum and minimum value, the following steps are follow :

1. Differentiate the given function.

2. For maxima or minima, put f'(x) = 0 and find critical points.

3. Then find the second derivative, i.e. f''(x).

4. Apply the critical points ( evaluated in second step ) in the second derivative.

5. Condition :-

  • The function f (x) is maximum when f''(x) < 0.

  • The function f (x) is minimum when f''(x) > 0.
Similar questions