Math, asked by Anonymous, 19 days ago

Find the absolute maximum and minimum of
f(t) = 4 {t}^{3} - 5 {t}^{2} - 8t + 3 \: on \: \pmb{[} - 1,3\pmb{]}.

Answers

Answered by user0888
12

\Huge\text{$\bold{42\ and\ -\dfrac{191}{27}}$}

\huge\text{\underline{\underline{Question}}}

Find the absolute maximum and minimum of \text{$f(t)=4t^{3}-5t^{2}-8t+3$} on [-1,3].

\huge\text{\underline{\underline{Topic}}}

\Large\text{[Differentiation]}

If the differentiation of a function exists, the function increases or decreases according to the differentiation. So, we can determine the increase and decrease to find the maximum and minimum.

\rightarrow\large\text{Formula for differentiation}

For a polynomial term, it is known for \text{$\boxed{(x^{n})'=nx^{n-1}}$}.

\rightarrow\large\text{Absolute maximum/minimum}

Absolute maximum and minimum are the maximum or minimum values in an interval. Like above, we can determine the differentiation to find these.

\huge\text{\underline{\underline{Explanation}}}

\large\text{$\bold{[Step\ 1.\ Derivative]}$}

\text{$f(t)=4t^{3}-5t^{2}-8t+3\Longrightarrow\boxed{f'(t)=12t^{2}-10t-8}$}

\large\text{$\bold{[Step\ 2.\ Investigation\ of\ variance]}$}

\bold{Given\ derivative}

f'(t)=2(6t^{2}-5t-4)=2(3t-4)(2t+1)

\bold{Increasing\ interval}

\text{$\cdots\longrightarrow\boxed{f'(t)>0$ in $t<-\dfrac{1}{2}$ or $t>\dfrac{4}{3}}$}

\bold{Critical\ points}

\text{$\cdots\longrightarrow\boxed{f'(t)=0$ in $t=-\dfrac{1}{2}$ or $t=\dfrac{4}{3}}$}

\bold{Decreasing\ interval}

\text{$\cdots\longrightarrow\boxed{f'(t)<0$ in $-\dfrac{1}{2}<t<\dfrac{4}{3}}$}

\bold{Differentiation\ table}

\large\begin{tabular}{| c | c | c |}\cline{1-3}$f'(t)$&$f(t)$&Interval\\\cline{1-3}$f'(t)>0$&$\nearrow$&$(\infty,-\dfrac{1}{2})$\\\cline{1-3}$f'(t)=0$&$\rightarrow$&$t=-\dfrac{1}{2}$\\\cline{1-3}$f'(t)<0$&$\searrow$&$(-\dfrac{1}{2},\dfrac{4}{3})$\\\cline{1-3}$f'(t)=0$&$\rightarrow$&$t=\dfrac{4}{3}$\\\cline{1-3}$f'(t)>0$&$\nearrow$&$(\dfrac{4}{3},\infty)$\\\cline{1-3}\end{tabular}

\large\text{$\bold{[Step\ 3.\ Evaluation]}$}

As we are given that the function is defined in [-1,3], we consider both the endpoints.

\bold{Left\ endpoint}

\cdots\longrightarrow f(-1)=2

\bold{Critical\ points}

\cdots\longrightarrow f\left(-\dfrac{1}{2}\right)=\dfrac{21}{4}

\bold{Critical\ points}

\cdots\longrightarrow f\left(\dfrac{4}{3}\right)=-\dfrac{191}{27}

\bold{Right\ endpoint}

\cdots\longrightarrow f(3)=42

\large\text{$\bold{[Final\ answer]}$}

\text{$\cdots\longrightarrow\bold{The\ absolute\ maximum\ is\ 42.}$}

\text{$\cdots\longrightarrow\bold{The\ absolute\ minimum\ is\ -\dfrac{191}{27}.}$}

Similar questions